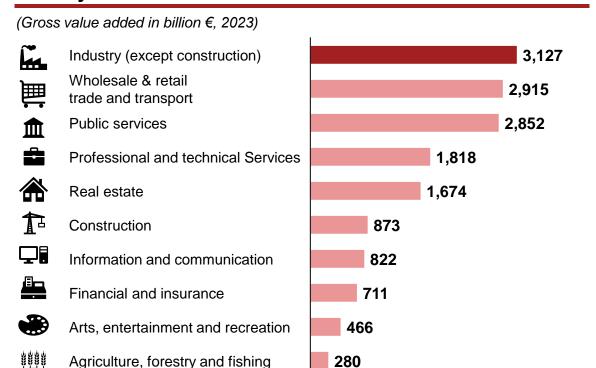
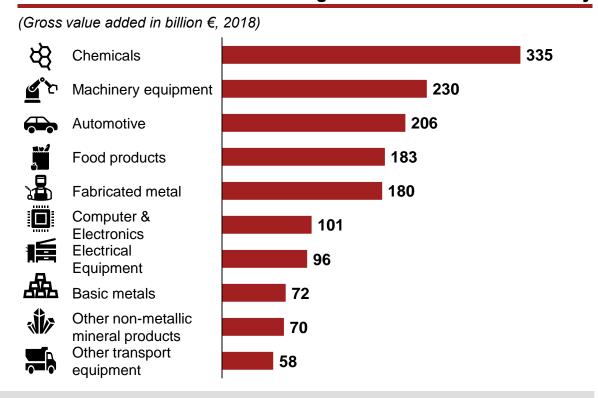


Content

1. Management summary


- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

Strategy&

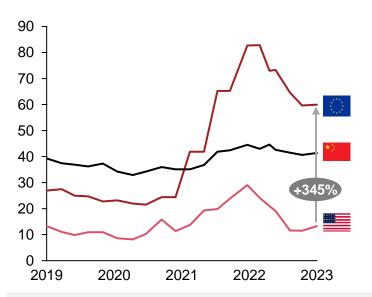

The industrial sector adds the most value to the EU's economy with a leading role for the chemical industry

Value added of EU's chemical industry

Industry adds the most value in the EU...

...With a leading role for the chemical industry

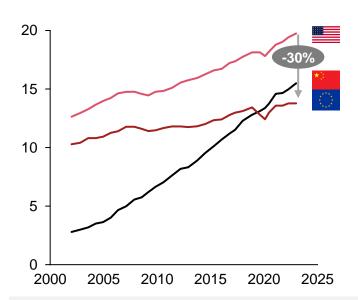
- The EU has the 2nd largest chemical industry in the world, contributing approximately 5% to the EU GDP
- The chemical industry generates €760 billion in revenues end employs over 1.2 million people


Strategy& Sources: Eurostat, CEFIC, S& analysis 4

However, the EU chemical industry is under pressure due to high feedstock prices, low GDP growth and high decarbonization costs

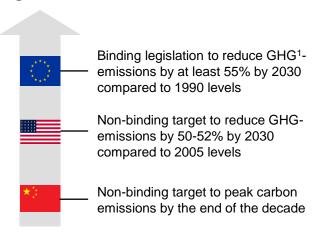
Challenges EU chemical industry

Higher feedstock prices in the EU


Industrial gas prices (2019 – 2023, in €/MWh)

The price differential is amongst others driven by 1) the EU's lack of natural resources; 2) the EU's limited bargaining power despite being the world's largest buyer of natural gas; 3) the EU's slow infrastructure investments; 4) the EU's higher energy taxation; and 5) the EU's stricter regulation

Lower GDP growth in the EU


GDP evolution at constant prices (2002 – 2023, in trillion €)

The GDP differential is amongst others driven by 1) the EU's relatively **low labor productivity growth** (80% below US level); and 2) the EU's **lagging position in the breakthrough of digital technologies** (e.g., artificial intelligence)

Higher decarbonization costs in the EU

High ambitions

Low ambitions

High decarbonization ambitions lead to high near-term investments needs for the EU industry that their competitors do not face. The non-metallic minerals, basic metals, chemicals and paper sector face €500 billion decarbonization costs over the next 15 years

The EU's transition to a circular climate-neutral economy with raw material security is needed to ensure a competitive chemical industry

Ambitions EU

100% circular, climateneutral economy

- Current raw material production and consumption is one of the main causes of climate change, biodiversity loss and pollution as primary materials are (largely) fossil-based and difficult to recycle
- Therefore, the EU aims to replace finite raw materials with renewable and secondary alternatives and stimulate high quality recycling and negative emissions

"The transition to a **circular economy** is necessary to reduce pressure on natural resources and to achieve the **2050 climate neutrality target**."

Raw material security

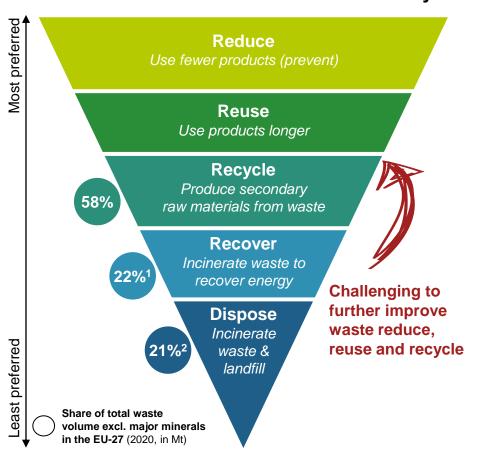
- Global population growth and economic development are driving the demand for raw materials putting pressure on countries to ensure a stable supply of resources
- Therefore, the EU strives to more efficiently use available raw materials, shorten the supply chain and reduce import dependency

"The global raw material use is expected to double between now and 2060 if policies are unchanged."

Competitive position (chemical) industry

- The competitive positioning of the (chemical) industry in the EU is under pressure (see previous page)
- Therefore, the EU aims to safeguard the economic strategic importance of the (chemical) industry by stimulating the transition towards a "green industry" and the replacement of fossil-based feedstock with circular alternatives

Mario Draghi

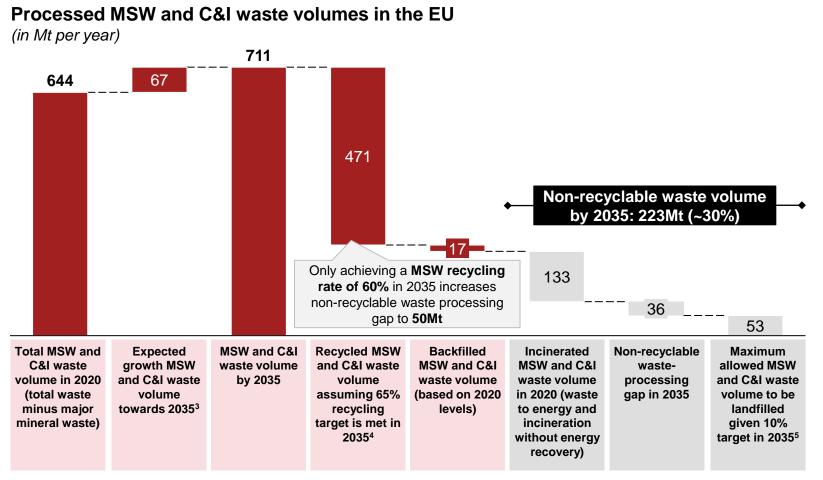

"The only way out is to **grow and become more productive**; the only way to become more productive is to **radically change**."

The transition in the EU is enabled by innovative solutions to boost productivity and counterbalance impact of ageing population

The EU faces challenges to further 'climb' the waste hierarchy – large waste volumes are still landfilled or incinerated

Transition up waste hierarchy

Waste Framework Directive: 'EU waste hierarchy'



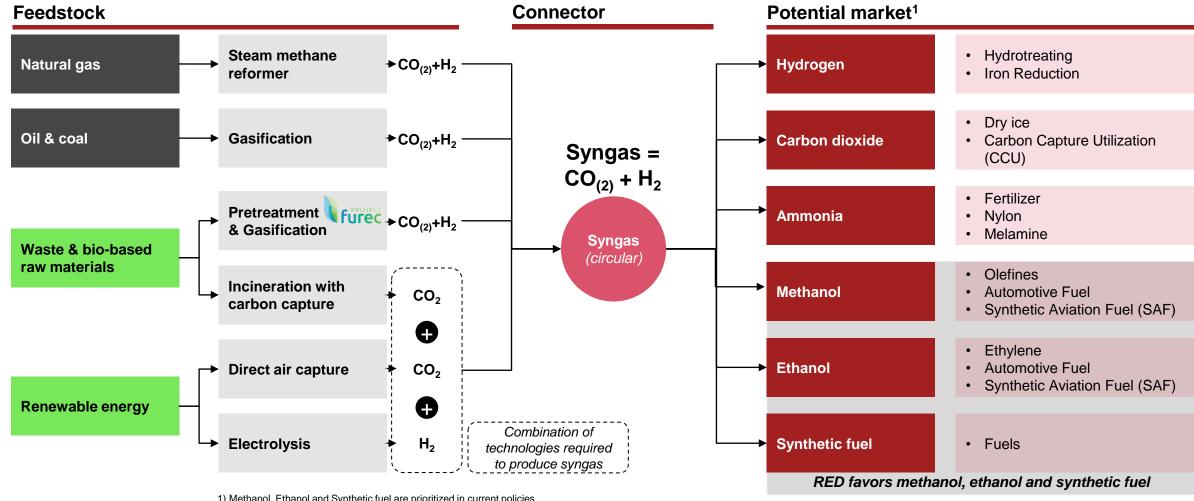
Enabler	Challenges to further 'climb' the waste hierarchy	Example
Product design	 Materials have a finite lifetime (e.g., paper can be recycled 5-7 times) Complexity of products has increased Products are designed to meet customer requirements, not for optimal recyclability 	
Human behaviour	 Material use is expected to increase Households and companies often do not comply with rules for source separating waste 	
Infrastructure & technology	 Waste processing technologies have typical yields of 50-90% High quality materials are often downcycled 	
Regulation & incentives	 Market for recycled materials and products is nascent Strict quality standards Recycled weight is prioritized over output quality 	

¹⁾ Includes 'backfilled waste volume (3%-pt.): backfilling is a recovery operation where suitable waste is used for refilling an excavated area with suitable materials, typically after a foundation, trench, or other structure has been built.; 2) Includes waste incinerated without energy recovery (1%-pt.); Note: numbers may not add up due to rounding. Source: European Commission; EU Waste Framework Directive; Eurostat; Strategy& analysis

Outlook indicates >30% of EU waste to be non-recyclable by '35 – potential for affordable and low carbon alternative waste processing technologies

High-level waste processing outlook in the EU (towards 2035)

Key insights

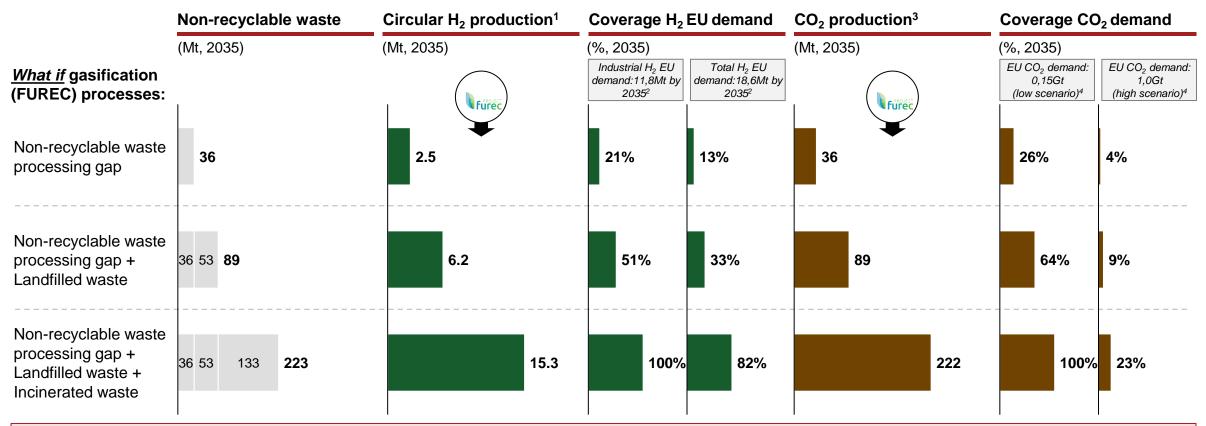

- The total waste volume in the EU amounted to 1,942Mt in 2020 including 1,298Mt major mineral waste volume from mining and construction & demolition
- The remaining waste is combination of MSW¹ and C&l² waste: 644Mt in 2020
- High-level outlook indicates waste volumes to grow towards 711Mt by 2035
- 471Mt of waste will be recycled in 2035, if the 65% recycling targets are achieved (improving recycling rates is challenging due to e.g., product design, finite material lifetime)
- The remaining waste volume (excl. backfilled waste) is 223Mt (~30%) by 2035, which is considered non-recyclable
- This includes an expected non-recyclable waste processing gap of 36Mt, requiring more processing capacity

¹⁾ Municipal Solid Waste; 2) Commercial & Industrial; 3) Growth rate of 1.0% YoY for MSW and 0.5% for C&l based historical growth rates for MSW and C&l ('10-'18) – in line with growth projections for material use;

⁴⁾ Includes digestion & composting and assumed that recycled volumes of C&I improve with 1% YoY; recycled C&I waste reaches 67% compared to total C&I waste in 2035; 5) Assumed 10% target also applies for C&I Source: Eurostat; OECD; Strategy& analysis

The production of circular syngas from non-recyclable waste enables the production of a wide range of circular products

Role of syngas

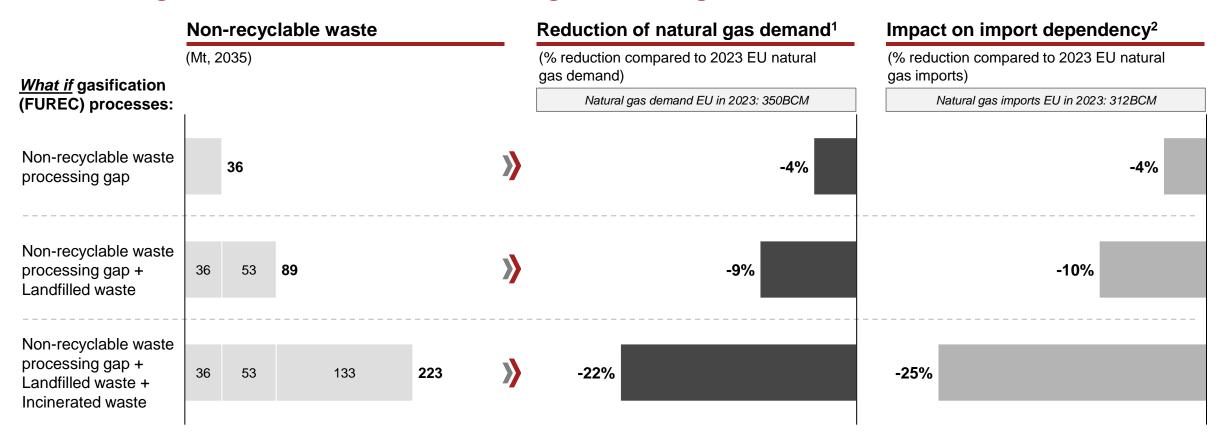


¹⁾ Methanol, Ethanol and Synthetic fuel are prioritized in current policies

Source: Chemistry Europe – 'Towards the Use of Renewable Syngas for the Decarbonization of the Industry' (2024); Expert input

Processing large non-recyclable waste volumes via gasification can cover a large share of future EU hydrogen and CO₂ demand

Potential of gasification via FUREC in covering EU hydrogen (H₂) and CO₂



The FUREC platform is scalable. Example: Closing the non-recyclable waste processing gap with the FUREC platform requires the construction of ~45 platforms (800kt/yr. capacity per platform). This build-up (incl. supporting infrastructure) requires large Capex investments and time

¹⁾ Conversion of FUREC applied: gasification of 800kt of waste yields 55kt of H₂, 2) Demand in 2035 interpolated from projections for 2030 and 2040; 3) Conversion of FUREC applied: FUREC produces 800kt of CO₂ out of 800kt of waste; 4) Future scale of CO₂ use is highly uncertain. Global estimates for CO₂ derived products range from less than 1Gt CO₂ use to 7Gt of CO₂ use for 2030. The higher estimates are considered very optimistic. It is assumed these estimates also provide indication for the future scale in 2035. Estimates scaled to EU based on EU size of chemical industry compared to global size of chemical industry (~15%) Source: The European Hydrogen Market Landscape (November 2023); IEA, Putting CO2 to use; CEFIC, World Bank, Strategy& analysis

Gasification of non-recyclable waste can also reduce EU natural gas demand, consequently lowering import dependency

Potential of gasification via FUREC on reducing EU natural gas demand

¹⁾ Gasification (FUREC) reduces natural gas demand by 280 million m³ for processing 800kt of non-recyclable waste (as gasification (FUREC) replaces steam methane reformer capacity); 2) EU natural gas production equals 38bcm in 2023, hence 312 BCM import dependency (e.g. Norway, US, Russia, Algeria, etc.) Source: Eurostat, IEA; FUREC website, Bruegel (Future European Union gas imports: balancing different objectives), Strategy& analysis

Gasification via FUREC is designed to convert non-recyclable waste into circular syngas and complement other waste processing technologies

Overview of waste processing technologies

		Fee	dstock conversion		
		Туріса	l input		
Method	Description	Non-recyclable waste	Specific waste stream	Typical output	Players (examples)
Mechanical recycling	Waste is recovered (e.g., through sorting, washing, drying, grinding and regranulating) without changing the material's chemical structure		e.g., plastic, metals, paper	Materials (e.g., plastic flakes)	VEOLIA PROZECO ZECO ZECO ZECO ZECO ZECO ZECO ZECO
Digestion/ composting	Biowaste (e.g., food waste) is broken down by bacteria in a controlled environment		e.g., biowaste	Biogas + digestate	Biogas-
Chemical recycling	Waste is broken down into molecules via controlled chemical processes (multiple methods exist such as pyrolysis and gasification)		Most technologies focus on plastic waste	Molecules	
- Pyrolysis	Waste is decomposed by heating waste to high temperatures without oxygen		Mostly plastic (or bio)	Pyrolysis oil (naphtha)	LYBJ LyondellBasell EXON
Gasification via FUREC	Waste is pre-treated and converted to pellets which are heated under high temperatures	✓		Circular syngas	RWE
Incineration (Waste-to-Energy)	Waste is incinerated in a controlled environment	✓		Heat + electricity	Twence • fortum
Landfill	Waste is disposed into or onto land	✓		No product	REMONDIS* WORKING FOR THE FUTURE

Strategy& Source: Company websites; Strategy& analysis

The FUREC platform contributes to a circular and climate-neutral economy, raw material security and a competitive industry in the EU

Ambitions Ell

Contribution FUREC platform to society


	Ambitions EU			
The FUREC platform	100% circular, climate-neutral economy	Raw material security	:☆: Competitive position (chemical) industry	
produces circular and affordable molecules for the (chemical) industry, bolstering its competitive and circular positioning	√	√	√	
offers flexibility as FUREC's core output product (syngas) enables the production of a wide range of circular products, e.g., fertilizers and olefines (plastics)	√	√	√	
offers a waste processing technology at scale (first planned plant has capacity of 800Kt per year), which can be built across the EU	√	√	√	
offers an alternative for processing non-recyclable waste, which is currently incinerated or landfilled	✓	✓		
has a positive environmental impact, substantially reducing emission of greenhouse gas (CO2), nitrogen and toxic fly and bottom ashes (compared to alternatives)	✓			

Gasification (FUREC) is a first-of-its-kind platform that combines individually mature technologies; its potential in the future waste market is endorsed by the European Innovation Fund with a subsidy of €108M

Chemical recycling technologies can be further stimulated via policies on output demand, availability of feedstock and financial incentives

Proposed policy recommendations

- Chemical recycling technologies have the potential to contribute to the EU's transition to a circular climate-neutral economy with raw material security and a competitive (chemical) industry
- These technologies require demand for their output, availability of feedstock and sufficient financial resources
- These requirements can be established via targeted transition policies that are harmonized across EU member states and value chains

Prioritized policy recommendations

So, the FUREC platform holds the potential to enable the EU chemical industry by addressing the non-recyclable waste challenge

Key statements

The industrial sector adds the most value to the EU's economy with a leading role for the chemical industry

However, the EU chemical industry is under pressure due to high feedstock prices, low GDP growth and high decarbonization costs

Hence, the EU's transition to a circular climate-neutral economy with raw material security is needed to ensure a competitive chemical industry

Simultaneously, the EU faces challenges to further 'climb' the waste hierarchy – large waste volumes are still landfilled or incinerated

Outlook indicates >30% of EU waste to be non-recyclable by '35 – potential for affordable and low carbon alternative waste processing technologies

The production of circular syngas from non-recyclable waste enables the production of a wide range of circular products

Processing large non-recyclable waste volumes via gasification can cover a large share of future EU hydrogen and CO₂ demand, while reducing natural gas demand

Gasification via FUREC is designed to convert non-recyclable waste into circular syngas and complement other waste processing technologies

The FUREC platform contributes to a circular and climate-neutral economy, raw material security and a competitive industry in the EU

Chemical recycling technologies should be stimulated via policies on output demand, availability of feedstock and financial incentives

Strategy&

15

Content

1. Management summary

2. Introduction FUREC

- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

Strategy&

The EU's ambition is to transition to a circular climate-neutral economy with raw material security and a competitive industry

Ambitions EU

100% circular, climateneutral economy

- Current raw material production and consumption is one of the main causes of climate change, biodiversity loss and pollution as primary materials are (largely) fossil-based and difficult to recycle
- Therefore, the EU aims to replace finite raw materials with renewable and secondary alternatives and stimulate high quality recycling and negative emissions

"The transition to a **circular economy** is necessary to reduce pressure on natural resources and to achieve the **2050 climate neutrality target**."

Raw material security

- Global population growth and economic development are driving the demand for raw materials putting pressure on countries to ensure a stable supply of resources
- Therefore, the EU strives to more efficiently use available raw materials, shorten the supply chain and reduce import dependency

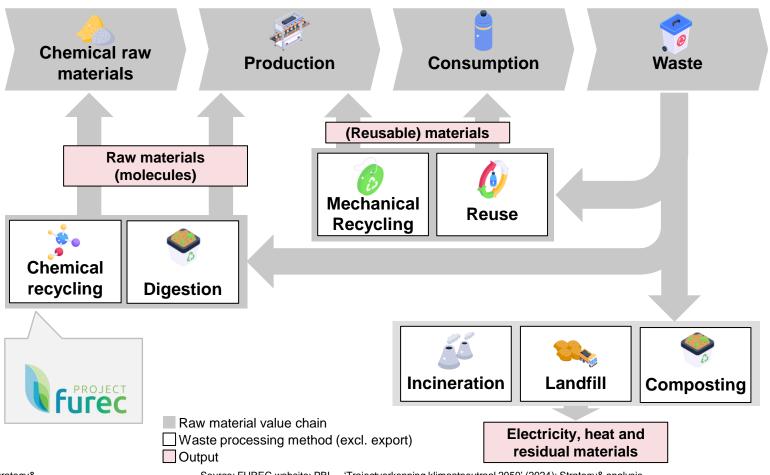
"The global raw material use is expected to double between now and 2060 if policies are unchanged."

Competitive position (chemical) industry

- The competitive positioning of the (chemical) industry in the EU is under pressure due to high feedstock prices, low GDP growth and high decarbonization ambitions and costs
- Therefore, the EU aims to safeguard the economic strategic importance of the (chemical) industry and to stimulate the transition towards a "green industry"

Mario Draghi

"The only way out is to **grow and** become more productive; the only way to become more productive is to radically change."


Details in appendix p.58-59

The transition in the EU is enabled by innovative solutions to boost productivity and counterbalance impact of ageing population

FUREC can play a role in the raw material value chain transformation by converting non-recyclable waste into valuable molecules via gasification

Introduction FUREC platform

Illustration role FUREC in chemical raw material value chain

Introduction FUREC platform

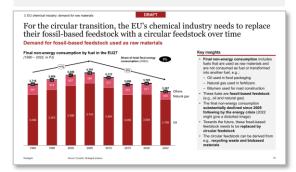
- The raw material value chain needs to become more circular with more focus on reduce, reuse and recycling
- FUREC consists of two processes: i) pre-treatment of waste (converting heterogenous waste into homogenous waste pellets); and ii) gasification of waste pellets at extremely high temperatures (~3.000 °C) to break down these pellets into molecules
- FUREC offers an alternative waste method in the raw material value chain for processing non-recyclable waste, which is currently incinerated or landfilled
- The potential role of chemical recycling technologies such as FUREC in the raw material value chain is also highlighted in the study "Trajectverkenning klimaatneutraal 2050" by PBL

The FUREC platform contributes to a circular and climate-neutral economy, raw material security and a competitive industry in the EU

Contribution FUREC platform to society

	◆ Ambitions EU →			
The FUREC platform	100% circular, climate-neutral economy	Raw material security	Competitive position (chemical) industry	
produces circular and affordable molecules for the (chemical) industry, bolstering its competitive and circular positioning	✓	√	✓	
offers flexibility as FUREC's core output product (syngas) enables the production of a wide range of circular products, e.g., fertilizers and olefines (plastics)	√	✓	√	
offers a waste processing technology at scale (first planned plant has capacity of 800Kt per year), which can be built across the EU	✓	✓	✓	
offers an alternative for processing non-recyclable waste, which is currently incinerated or landfilled	✓	\checkmark		
has a positive environmental impact, substantially reducing emission of greenhouse gas (CO2), nitrogen and toxic fly and bottom ashes (compared to alternatives)	√			

This study explores the chemical raw material value chain, the role of alternative waste processing technologies and proposes recommendations


Scope of study and research questions

EU chemical industry: demand for raw materials

□ What is the outlook of the chemical raw materials demand (e.g., natural gas for fertilizer) by the EU chemical industry?

Section 2

P.21-27

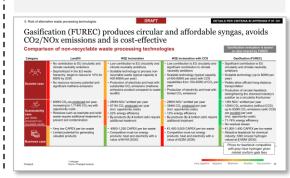


EU waste market: supply of non-recyclable waste

- What is the outlook for the EU waste market?
- □ Which part of EU waste volumes is not recycled and has potential to be used as raw material by the chemical industry?

Section 3

P.28-44



Role of alternative waste processing technologies to convert non-recyclable waste

Appendix provides overview emerging alternative waste processing technologies (see p.82-92)

Section 4

P.45-51

Recommendations to stimulate alternative waste processing technologies

□ What are recommendations to stimulate alternative waste processing technologies?

Section 5

P.52-56

Strategy&

Content

- 1. Management summary
- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

Strategy&

21

The EU has the 2nd largest chemical industry in the world, contributing approximately 5% to the EU GDP

Overview EU chemical industry

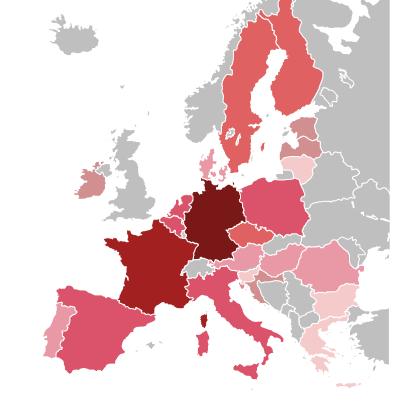
Key figures EU chemical industry (2022)

2nd largest chemical industry in the world in terms of revenue

€760 billion revenue contributing approximately 5% to the EU27 GDP

Over 1.2 million employees active in 29,000 chemical companies

Key players (examples)



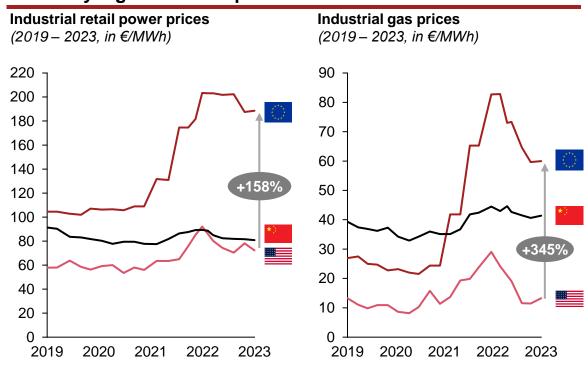
Chemical industry revenue per EU country

Chemical industry revenue per country in the EU27 (2022)

Source: CBS; CEFIC; Strategy& analysis

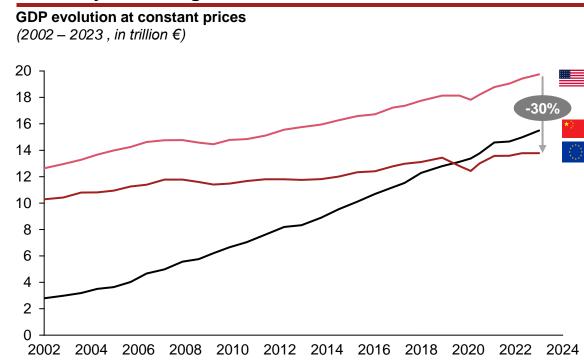
Revenue >€200B

Revenue €20-50B


Revenue €5-20B Revenue €1-5B Revenue <€1B

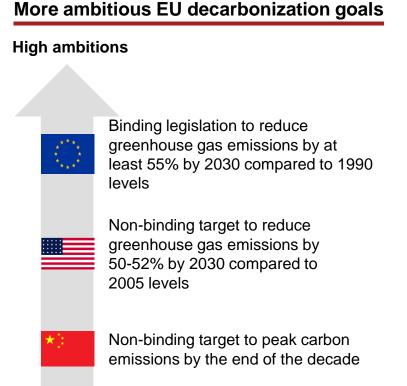
Revenue €100-200B Revenue €50-100B

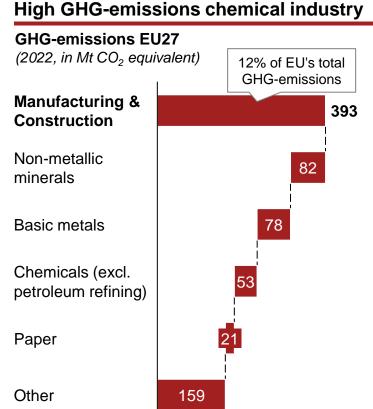
The EU chemical industry's competitive positioning is under pressure due to relatively high feedstock prices and low regional GDP growth


Challenges EU chemical industry (1/2)

Relatively high feedstock prices in the EU vs. USA & China

The price differential is amongst others driven by 1) the EU's **lack of natural resources**; 2) the EU's **limited bargaining power** despite being the world's largest buyer of natural gas; 3) the EU's **slow infrastructure investments**; 4) the EU's **higher energy taxation**; and 5) the EU's **stricter regulation**

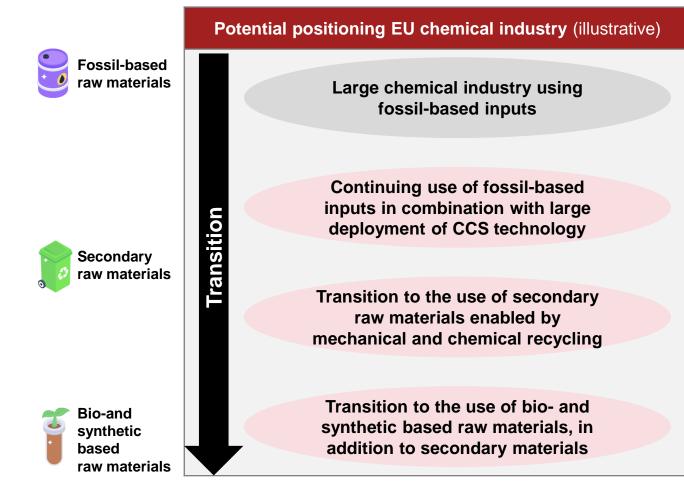

Relatively low GDP growth in the EU vs. USA & China



The GDP differential is amongst others driven by 1) the EU's relatively **low labor productivity growth** (80% below US level); and 2) the EU's **lagging position in the breakthrough of digital technologies** (e.g., artificial intelligence)

In addition, the EU's decarbonization goals are more ambitious, creating pressure to reduce CO2-emissions and high investment needs

Challenges EU chemical industry (2/2)


High investments for decarbonization

- According to the report 'The future of European Competitiveness' by Mario Draghi:
 - The EU's four largest Energy Intensive Industries – non-metallic minerals, basic metals, chemicals and paper – face €500 billion decarbonization costs over the next 15 years
 - The 'hardest-to-abate' parts of the EU transportation sector maritime and aviation face €100 billion decarbonization costs each year from 2031 to 2050
- In addition, the EU introduced the most substantial carbon pricing compared to the US and China: heavy industrial production has been largely covered by free allowances under the ETS¹, but this will be progressively phased out with the introduction of the CBAM²

Low ambitions

Hence, the EU chemical industry is at a crossroad: "how will the chemical industry evolve given their challenges?"

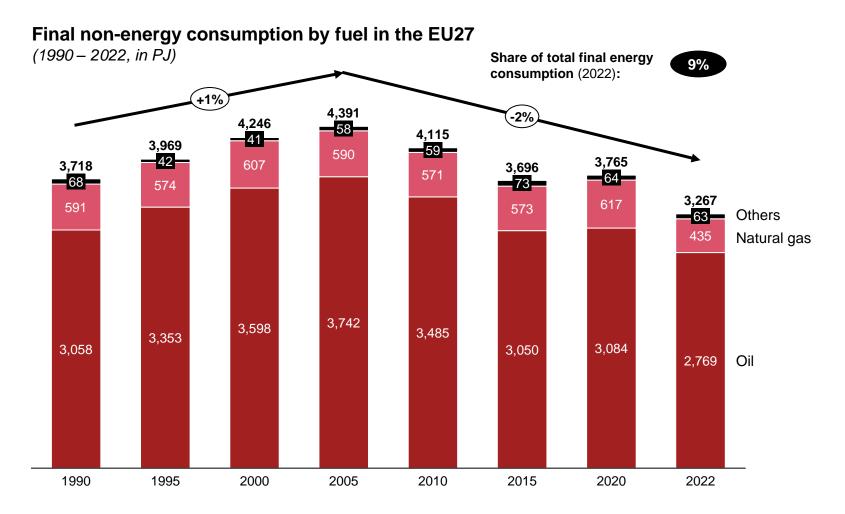
Future positioning EU chemical industry

The competitive position of the EU chemical industry mainly depends on 1) access to affordable feedstock; and/or 2) close proximity to end-consumer market(s)

C&E11

"Can Europe's chemical industry survive net zero?"

"Draghi's industrial masterplan has decarbonization at its core"

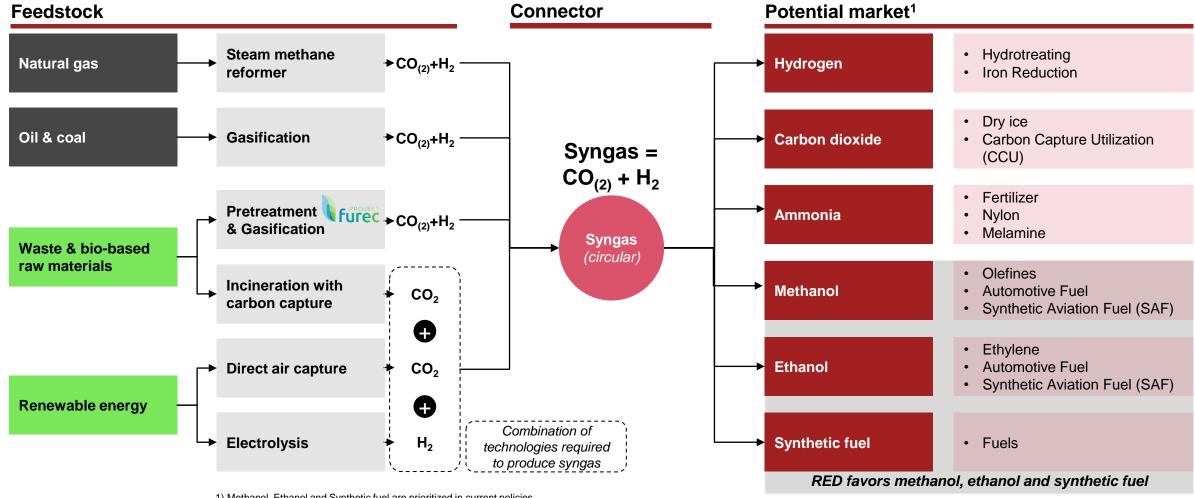

"Europe's chemicals sector braces for new policy impact"

Current

Potential future positioning

For the circular transition, the EU's chemical industry needs to replace their fossil-based feedstock with a circular feedstock over time

Demand for fossil-based feedstock used as raw materials


Key insights

- Final non-energy consumption includes fuels that are used as raw materials and are not consumed as fuel or transformed into another fuel, e.g.,:
 - Oil used in food packaging
 - Natural gas used in fertilizers
 - Bitumen used for road construction
- These fuels are fossil-based feedstock (e.g., oil and natural gas)
- The final non-energy consumption substantially declined since 2005 following by the energy crisis (2022 might give a distorted image)
- Towards the future, these fossil-based feedstock needs to be replaced by circular feedstock
- The circular feedstock can be derived from e.g., recycling waste and biobased materials

Strategy& Source: Eurostat; Strategy& analysis

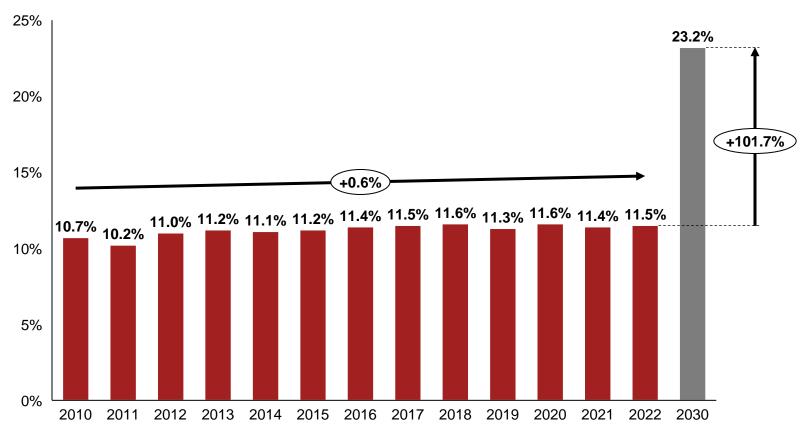
Part of the demand for circular feedstock can be fulfilled by the conversion of non-recyclable waste into circular syngas

Role of syngas

¹⁾ Methanol, Ethanol and Synthetic fuel are prioritized in current policies Source: Chemistry Europe – 'Towards the Use of Renewable Syngas for the Decarbonization of the Industry' (2024); Expert input

Content

- 1. Management summary
- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

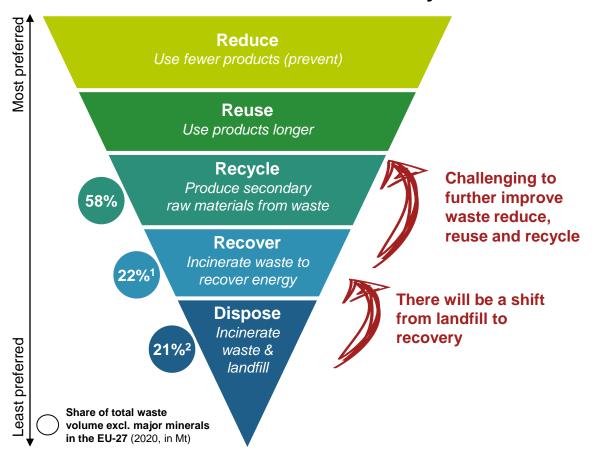

Strategy&

The circularity rate in the EU has ranged between 10-12% in the past decade – doubling is required to reach the EU target by 2030

Circularity rate in the EU

CMUR in the EU27: actuals and target

(2010 – 2022 and target 2030, %)


Key insights

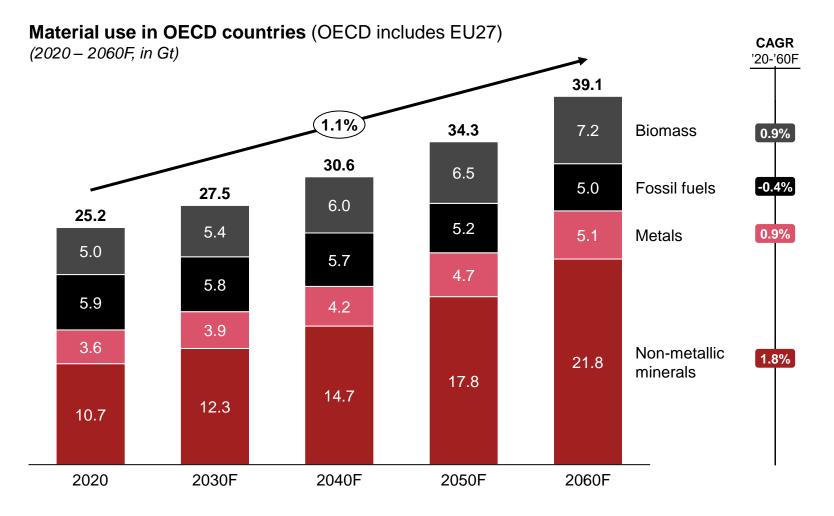
- The Circular Material Use Rate (CMUR)
 indicates the circularity of materials in the
 economy and refers to the share of the total
 amount of material used in the economy
 that is accounted for by recycled waste
- Between 2010 and 2022, the CMUR in the EU hovered between 10 and 12%
- The EU's circular economy action plan aims to reduce pressure on natural resources and states that the EU aims to double its CMUR between 2020 and 2030
- The CMUR can be improved by increasing the amount of recycled waste and/or decreasing the use of materials
- This would reduce the amount of primary material extracted for production and the associated negative impacts on the environment and climate

The EU faces challenges to further 'climb' the waste hierarchy — large volumes of waste are still landfilled or incinerated

Transition up EU waste hierarchy

Waste Framework Directive: 'EU waste hierarchy'

Key insights


- The material use is expected to increase with 1.1% CAGR towards 2060 driven by amongst others economic and population growth, technological advancements and ongoing urbanization, increasing waste streams
- Many EU member states are at risk of not reaching the 2025 recycling targets as it is challenging to recycle more waste due to e.g., increasing product complexity and finite material lifetime
- The maximum 10% MSW landfill rate by 2035 in the EU will cause a shift from landfill to recycling and W2E since many EU member states are currently above this threshold
- Therefore, waste incineration plays a dominant role in the EU waste landscape accounting for 21%³ of the processed MSW and C&I waste in 2020
- A high-level outlook for the EU indicates a non-recyclable waste volume up to 223Mt (~30% of total MS and C&I waste) including a processing gap of 36Mt by 2035

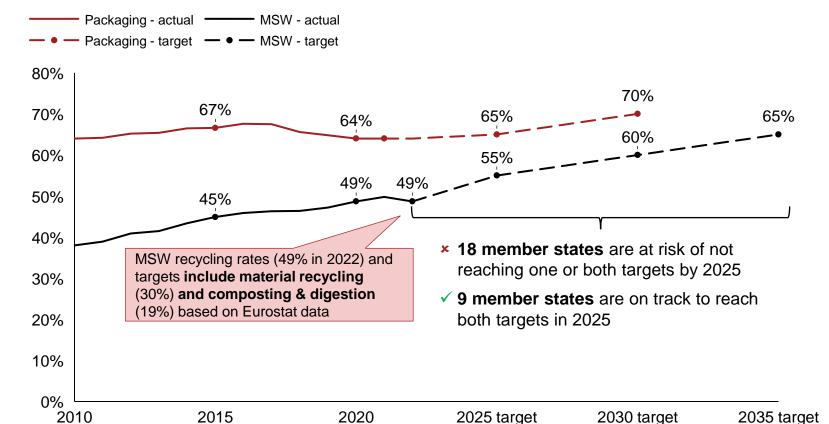
See details point 1-5 on next pages

¹⁾ Includes 'backfilled waste volume (3%-pt.): backfilling is a recovery operation where suitable waste is used for refilling an excavated area with suitable materials, typically after a foundation, trench, or other structure has been built.; 2) Includes waste incinerated without energy recovery (1%-pt.); 3) Waste incineration consists of waste to energy 19%-pt. (part of recover) and waste incineration without recovery 1%-pt. (part of dispose); Note: numbers may not add up due to rounding. Source: European Commission; EU Waste Framework Directive; Eurostat; Strategy& analysis

The material use of OECD countries is expected to grow with 1.1% CAGR towards 2060, increasing waste streams

1 Outlook for material use in OECD countries

Key drivers

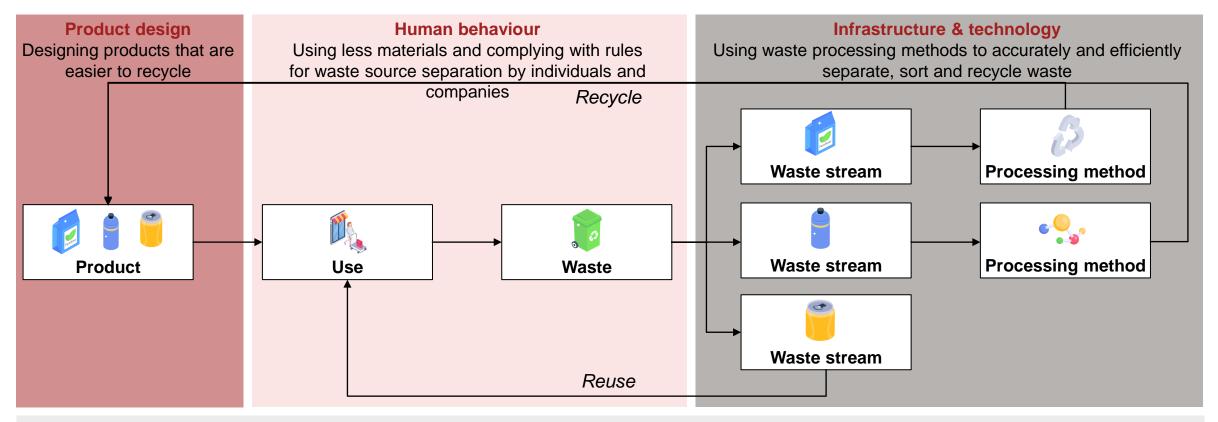

- Economic and population growth increase the demand for goods and services, leading to increased material use
- New technological advancements often require new materials, driving up material use
- Ongoing urbanization and the need for infrastructure development (e.g., buildings, roads) contribute significantly to material use
- Changes in consumer behavior and lifestyles, such as increased consumption of electronic goods and vehicles and increasing living standards, drive material use
- While environmental policies and regulations aim to reduce material use and improve recycling, they can also lead to increased material use in the short term as industries adapt to new standards and technologies

Although recycling rates in the EU have improved in the past decade, many countries are at risk of not reaching the 2025 recycling targets

2 Recycling: actuals and targets

Packaging and MSW recycling rates and targets in the EU271

(2014 – 2024 and targets 2025, 2030 and 2035, in %)



Key insights

- Since 2010, EU member states have successfully increased the MSW recycling rate to 49% in 2022
- In contrary, the packaging recycling rate remained stable around 64% in the past decade
- Going forward, the EU has set ambitious MSW and packaging recycling targets to stimulate the transition up the EU waste hierarchy
- Yet, many EU member states are currently at risk of not reaching these targets:
 - 10 member states are at risk of not reaching both targets by 2025 (e.g., Poland, Romania, Hungary)
 - 8 member states are at risk of not reaching the MSW target by 2025, but are on track to meet the packaging target (e.g., Spain, France)
 - 9 member states are likely to meet both reach recycling targets by 2025 (e.g., Denmark, Belgium, Italy) – only 4 are likely to meet all material-specific packaging recycling targets (incl. the NL)

Recycling is enabled by product design, human behaviour, infrastructure & technology and regulation & incentives

2 Recycling: enablers

Regulation & incentives

Stimulating individuals and companies to conduct better waste management practices through a push effect (regulation) and a pull effect (financial incentives)

Strategy& Source: Strategy& analysis

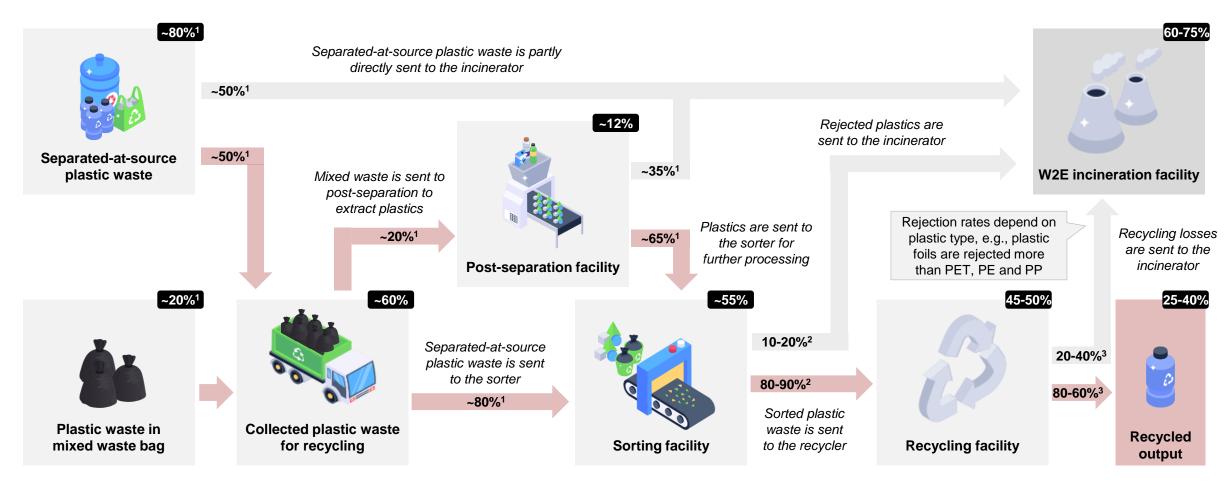
Yet, the recycling potential is limited by amongst others finite material lifetime, product complexity and improper waste sorting

2 Recycling: improvements and challenges

Enabler	Improvements	Challenges		
	based or biodegradable packaging, 100% paper packaging	Materials have a finite lifetime due to loss of original material properties, degradation and contamination from the recycling process: e.g., paper can be recycled 5-7 times		
Product design		The complexity of products has increased over time (e.g., use of multilayer material), negatively affecting recyclability		
		Products are designed to meet customer requirements, not for optimal recyclability		
Human behaviour	✓ Increased awareness and efforts by individuals and companies to apply proper waste sorting techniques (e.g., more separated-at-source plastic waste and biowaste) and consume more recyclable materials (e.g., biobased plastics)	Households and companies often do not comply with rules for source separating waste (driven by e.g., unawareness and/or ease), leading to contaminated waste streams		
Infrastructure	technology, plastic chemical recycling technology, blowaste	Waste processing technologies (separating, sorting and recycling) have typical yields of 50-90% (e.g., for plastics, roughly one third of the collected waste is recycled and the rest is incinerated in the NL)		
technology	processing technology – see overview emerging technologies in appendix p.81-91)	High quality materials are often downcycled into lower quality products due e.g., contamination in the waste system		
Regulation & incentives	✓ Introduced regulation and (financial) incentives to promote waste recycling (e.g., maximum 10% MSW landfill rate, MSW and packaging waste recycling targets – see planned EU regulation overview in appendix p.65)	★ The market for recycled materials and products is nascent – no to limited incentives to pay a premium (compared to virgin)		
		Strict quality compliance standards for reusing recycled waste in new products (e.g., requirements from European Food Safety Authority)		
		* Recycled weight is prioritized over output quality due to lack of quality requirements		

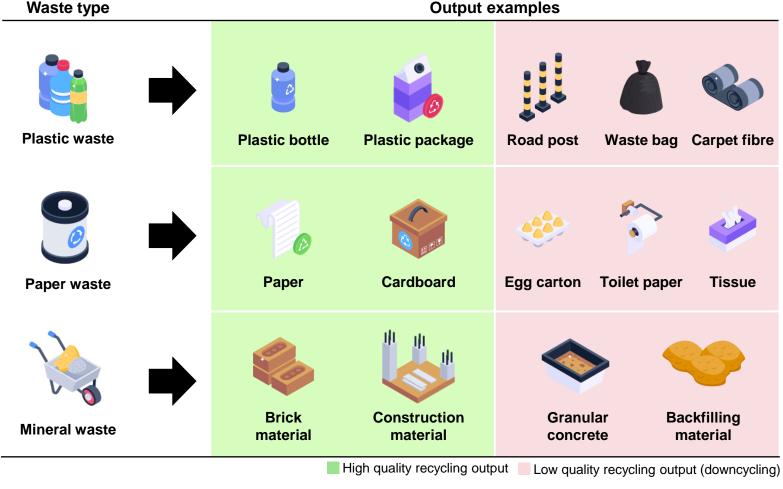
Materials have a finite lifetime as recycling leads to loss of original material properties, degradation and contamination

2 Recycling challenges: finite material lifetime


Waste type	Recycling multiple	Loss rate	Comments
Wood waste	5-10 (mostly A and A/B wood)	10-20%	Depending on the type, wood can be recycled up to 10 times, resulting in a 10-20% loss rate
Paper waste	5-7	15-20%	Paper can be recycled up to 7 times and the quality of the output declines every cycle, resulting in a 15-20% loss rate
Plastic waste	2-3 (depends on type)	33-50%	Depending on type and regulation, plastics can be recycled up to 3 times, resulting in a 20-40% loss rate
Biowaste	1	0%	Biowaste is recycled once, as 1) it mostly becomes animal feed and 2) its material properties result in quick decomposition of the waste
Sludge waste	1	0%	Solid materials in sludge are extracted during treatment process and used as primary or secondary raw material input
Glass waste	∞	10%	Glass (both flat and packaging) can be recycled indefinitely (is melted and transformed into new products), some loss incurs when mixed with other materials
Mineral waste	∞	0%	When mineral waste is not recycled or reused, it is stored to be used at a later stage
Metal waste	∞	0%	Metal can be recycled indefinitely (is melted and transformed into new products) and is never lost as the waste has a positive economic value

Key insights

- Most materials have a finite lifetime, since each recycling cycle:
 - The material loses some of its original properties (e.g., paper fibres become shorter and weaker)
 - The material undergoes some level of degradation making it less suitable for further recycling
 - The material undergoes some level of contamination, making it more difficult or even impossible to recycle again
- The table indicates the number of times a material can be recycled ('recycling multiple') and the corresponding loss from the recycling process ('loss rate')
- Evidently, some materials such as wood, paper and plastic can be recycled a finite number of times
- Other materials such as metal and glass have an infinite recycling multiple, and can therefore be recycled infinitely


There are substantial losses in the system: roughly one third of the collected plastic waste is recycled and the rest is incinerated in the NL

2 Recycling challenges: losses in the system (illustration plastic chain NL)

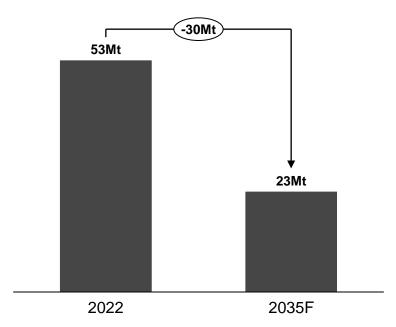
High quality materials are regularly downcycled into lower quality products due to bottlenecks in the system such as contamination

2 Recycling bottlenecks: downcycling

Key insights

- Recycling output can be classified as high quality or low quality ('downcycling')
- High quality materials are regularly downcycled into lower quality products: research at the municipal level in the NL indicates that one third to half of the recycled material volume, is downcycled into lower quality alternatives
- This is amongst others caused by challenges in the system such as contamination from the recycling process or from improper waste source separation by individuals and companies
- Downcycling can also be a side-effect from regulation: strict food-grade packaging regulation (European Food Safety Authority) results in materials being downcycled as it cannot be reused for food applications
- Although downcycling technically counts as recycling, it is not (always) desirable as virgin material must be acquired to produce the original product again, putting pressure on natural resources

The maximum MSW landfill rate of 10% for all EU member states by 2035 will cause a shift from landfill waste to more recycling and W2E

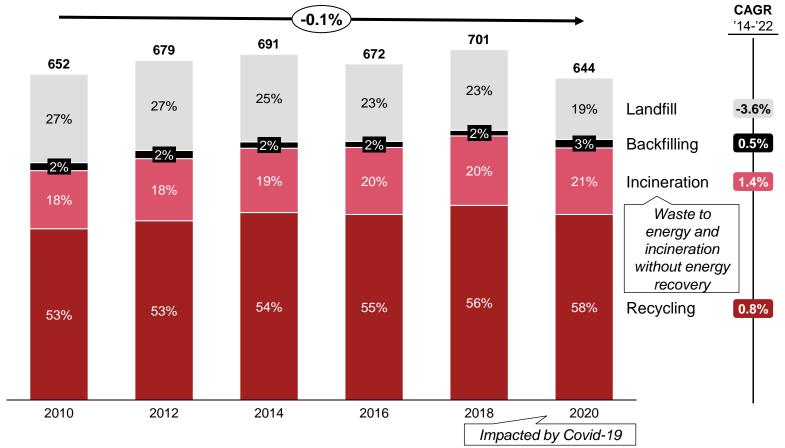

3 Shift from waste landfill to recycle and W2E

Most EU countries landfill >10% of MSW

MSW landfill rate per EU27 country¹ (2022, in %) Low (<10%) Medium (10%-30%) High (>30%) No data

Impact max. 10% MSW landfill rate in EU

Landfilled MSW volume in the EU27³ (2022 vs. 2035F, in Mt)

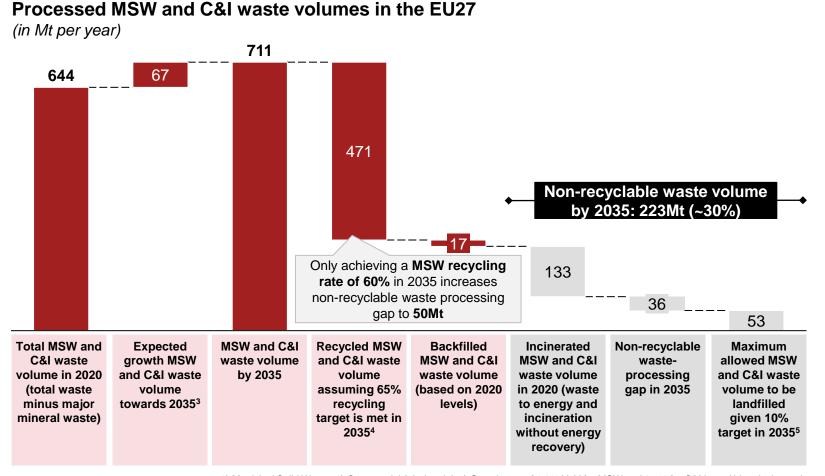

- EU member states demonstrate much variation in terms of their MSW landfill rate
- In 2022, Spain (11Mt), France (8Mt), Italy (5Mt) and Poland (4Mt) account for the largest landfilled MSW volume
- In recent years, landfill has become more challenging in the EU following strict regulations on what waste can (not) be landfilled
- To stimulate the transition up the EU waste hierarchy further, all EU member states cannot landfill more than 10% of their MSW volume by 2035
- Since many EU member states are currently above this threshold, there will be a shift from waste landfill to other waste processing methods
- Between 2022 and 2035, approximately 30Mt of MSW waste can no longer be landfilled by EU member states and therefore must be processed by other processing methods leading to more recycling and W2E incineration

¹⁾ For Czechia 2022 data is missing, hence 2021 data has been used to assess the landfill rate; 2) Not all waste types that are currently landfilled can be processed in W2E-plants such as hazardous waste; 3) Impact of landfill target when total MSW volume remains at 2022 levels Source: Eurostat; European Environmental Agency; CEWEP; University of Edinburgh; Strategy& analysis

Waste incineration plays a dominant role in the EU waste market, processing 21% of the total MSW and C&I waste in 2020

4 Incinerated waste volume

MSW and C&I waste volume excl. major minerals in the EU27 per processing method (2010 – 2020, in Mt)



- The total processed MSW and C&I waste volume in the EU (excl. major minerals) decreased from 652Mt in 2014 to 644Mt in 2020 (-0.1% CAGR)
- Waste processing in the EU is largely governed by directives and regulation such as the EU waste hierarchy
- As a result, relatively more MSW is currently processed by more favourable waste processing methods compared to 2010:
 - The landfill rate decreased from 27% to 19% in the past decade, mostly driven by the Landfill Directive that sets landfill requirements and restrictions
 - The recycling rate (incl. composting & digestion) increased from 53% to 58% in the past decade, driven by successful efforts to stimulate recycling (e.g., CEAP¹)
- Despite efforts to 'climb' the EU waste hierarchy, a substantial amount of MSW and C&I waste in the EU is incinerated (21%) or landfilled (19%)

¹⁾ Circular economy action plan Source: Eurostat; EU Directive 2008/98/EC; Directive 1999/31/EC; Strategy& analysis

A high-level outlook for the EU indicates >30% of waste to be non-recyclable by 2035, requiring incineration and landfilling

5 High-level waste processing outlook in the EU (towards 2035)

- The total waste volume in the EU amounted to 1,942Mt in 2020 including 1,298Mt major mineral waste volume from mining and construction & demolition
- The remaining waste is combination of MSW¹ and C&I² waste: 644Mt in 2020
- High-level outlook indicates waste volumes to grow towards 711Mt by 2035
- 471Mt of waste will be recycled in 2035, if the 65% recycling targets are achieved (improving recycling rates is challenging due to e.g., product design, finite material lifetime)
- The remaining waste volume (excl. backfilled waste) is 223Mt (~30%) by 2035, which is considered non-recyclable
- This includes an expected non-recyclable waste processing gap of 36Mt, requiring more processing capacity
- Non-recycle waste volumes provides opportunity for affordable and low carbon alternative waste processing technologies

¹⁾ Municipal Solid Waste; 2) Commercial & Industrial; 3) Growth rate of 1.0% YoY for MSW and 0.5% for C&I based historical growth rates for MSW and C&I ('10-'18) – in line with growth projections for material use;

⁴⁾ Includes digestion & composting and assumed that recycled volumes of C&I improve with 1% YoY; recycled C&I waste reaches 67% compared to total C&I waste in 2035; 5) Assumed 10% target also applies for C&I Source: Eurostat; OECD; Strategy& analysis

Content

- 1. Management summary
- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
 - Deep-dive: NL waste market
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

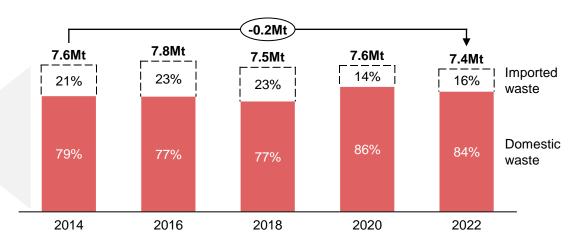
Strategy&

The NL faces W2E overcapacity, hence W2E-plants rely on waste imports to maintain a ~90% utilisation rate

Overcapacity and import dependency W2E-plants in the NL

Total capacity vs. production W2E-plants NL

2016


(2014 – 2022, in Mt and %) +0.3Mt Total capacity 8.2Mt 8.3Mt 8.0Mt 8.0Mt 8.3Mt **3**% 8% __5%__ 9% 10% **Excess capacity** 7.8Mt 7.6Mt 7.5Mt 7.6Mt 7.4Mt Production (97%)(95%)(92%)(90%)(91%)

 The total incineration capacity of W2E-plants in the NL has grown by 0.3Mt in the past decade to 8.3Mt in 2022

2018

- This increase is caused by an increase of the permitted waste volume at EEW Energy From Waste Delfzijl (+192Kt), SUEZ ReEnergy (50Kt) and Zavin (+2Kt)
- In contrast, the **production of the W2E-plants declined over time** from 7.6Mt in 2014 to 7.4Mt in 2022
- As a result, the excess capacity in the Dutch W2E market increased in the past decade, growing from 5% to 10% between 2014 and 2022

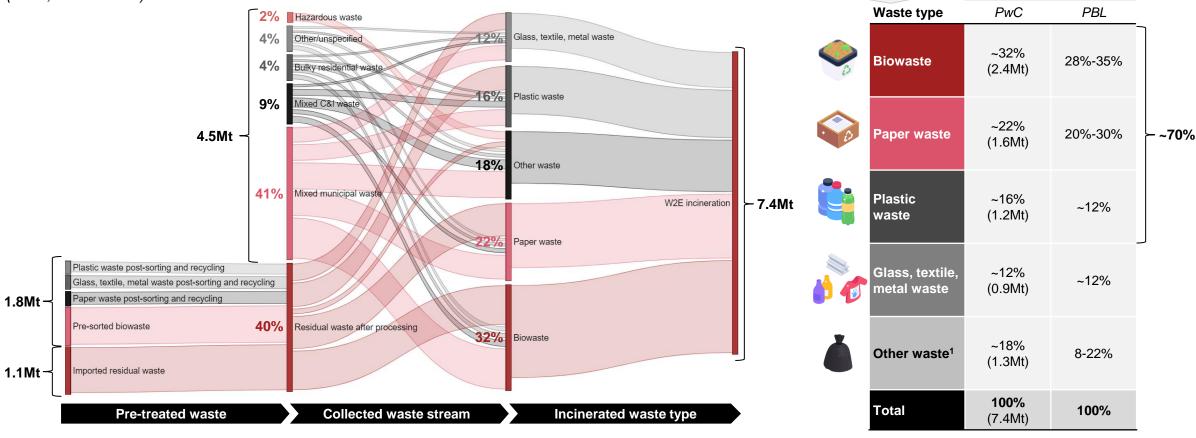
Imported vs. domestic incinerated waste by W2E-plants NL (2014 – 2022, in Mt and %)

- Most incinerated waste in W2E-plants is domestic (84%) and the share of domestic incinerated waste has grown from 79% in 2014 to 84% in 2022
- The remaining incinerated waste volume (16%) is imported from abroad (e.g., Belgium, Germany and the UK)
- Even though less incinerated waste in W2E-plants is imported than in 2014,
 W2E-plants still rely on waste imports to partly fill the excess capacity and to maintain a utilisation rate of ~90%

2014

2020

2022


Roughly 70% of the incinerated waste volume by W2E-plants in the NL consists of bio-, paper and plastic waste

Incinerated waste volume by W2E-plants per waste type

Sankey diagram incinerated waste volume by W2E-plants in the NL incl. import (2022, in Mt and %)

Incinerated waste often consists of a composition of different material types

Incinerated waste volume by W2E-plants in NL (%)

¹⁾ Including all remaining waste types in the Dutch waste landscape amongst others wood waste, rubber waste and hazardous waste Source: Rijkswaterstaat – 'Afvalverwerking in Nederland' (2022); CBS; KPMG – 'Plastic feedstock for recycling in the Netherlands' (2023); PBL & TNO – 'Decarbonisation options for the Dutch waste incineration industry' (2022); Strategy& analysis

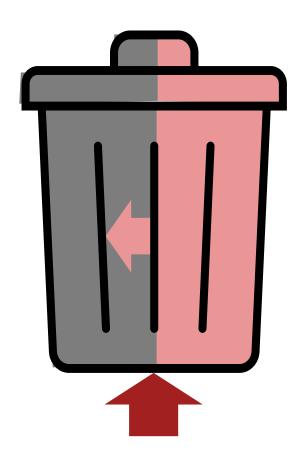
Specific plastic waste volumes can be processed alternatively, but >95% of the remaining waste is gasified or incinerated

Applicable processing technologies for incinerated waste

	Biowaste		Incinerated waste volume	Applicable technologies to process incinerated waste				
			by W2E-plants in the NL (2022, in Mt)	Pyrolysis	Depolymerization	Solvolysis	Gasification	W2E (+CCS/U)
0			2.4Mt				2.4Mt	2.4Mt
	Paper waste		1.6Mt				1.6Mt	1.6Mt
	Plastic waste	PE/PP ¹	0.1Mt	0.1Mt				
		PET ¹	0.05Mt		0.05Mt			
		EPS ¹	0.01Mt 1.2Mt			0.01Mt		
		Others ²	1.0Mt				1.0Mt	1.0Mt
	Glass, textile, metal waste		0.9Mt				0.9Mt	0.9Mt
	Other waste		1.3Mt				1.3Mt	1.3Mt
	Total		7.4Mt	0.1Mt	0.05Mt	0.01Mt	7.2Mt	7.2Mt

Incinerated waste often consists of a composition of different material types

- PE/PP, PET and EPS can alternatively be processed via chemical recycling: <5% of total incinerated waste volumes
- The output products have a higher value than when these plastic waste volumes are incinerated or gasified
- Effective chemical recycling of these plastics requires increase in source and post-separation
- >95% waste remains, when specific plastics are processed via chemical recycling
- Gasification or W2E (+CCS/U) technologies are required for processing the remaining waste
- Gasification and W2E + (CCS/U) technologies can also process PE/PP, PET and EPS


Content

- 1. Management summary
- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

Strategy&

Alternative waste processing technologies can play a future role in processing non-recyclable waste in addition to W2E (with CCS)

Overview non-recyclable waste processing technologies

Non-recyclable waste processing technologies

- · Landfill is the oldest waste processing method in the EU
- Decomposition of landfilled organic waste results in large methane emissions
- Landfilled waste volume will be reduced in the future driven by the 10% maximum MSW landfill rate by 2035 for all EU member states

In scope like-for-like comparison?

W2E incineration (with CCS)

Landfill

- W2E incineration converts waste into heat, steam and residual materials
- Waste incineration emits greenhouse gasses (e.g., CO2), hence deployment of carbon capture storage is emerging
- The EU Waste Framework Directive creates a policy environment where incineration is a less favorite option compared to recycling and reus

₩2E

☑ W2E + CCS

Alternative waste processing tech.

- Emerging alternative waste processing methods (e.g., gasification (FUREC)) can play a role in processing non-recyclable waste in the EU in addition to W2E incineration (with CCS technology)
- Gasification use chemical processes to convert waste into molecules, while reducing the emissions of greenhouse gas emissions

☑ Gasification (FUREC) designed for processing nonrecyclable waste

The scope of these non-recyclable waste processing technologies is clearly outlined and defined

Scope non-recyclable waste processing technologies

Scope like-for-like comparison

- The like-for-like comparison prioritizes the applicable methods for processing non-recyclable waste:
 - Landfill focused on waste disposal site
 - W2E incineration focused on W2E-plant only (given other steps in the value chain, such as waste sorting and separation, are not mandatory)
 - W2E incineration with CCS identical to incineration with additional CCS capabilities
 - Gasification FUREC is used for reference (with and without CCS capabilities)
- To ensure a like-for-like comparison, we assess these technologies at a standardized waste processing capacity of 800Kt of non-recyclable waste, considering only greenfield operations

Scope included non-recyclable waste processing technologies

Landfill requires waste disposal site with

some infrastructure (e.g., impermeable

liners, gas recovery mechanisms, and

operation and prevent environmental

W2E incineration plants have standard

W2E incineration plants have standard

additional complexity with CCS as this

FUREC uses a vital pre-treatment step with entrained flow gasification technology to ensure homogeneity of

input and output quality (CCS capabilities

can be embedded in the FUREC

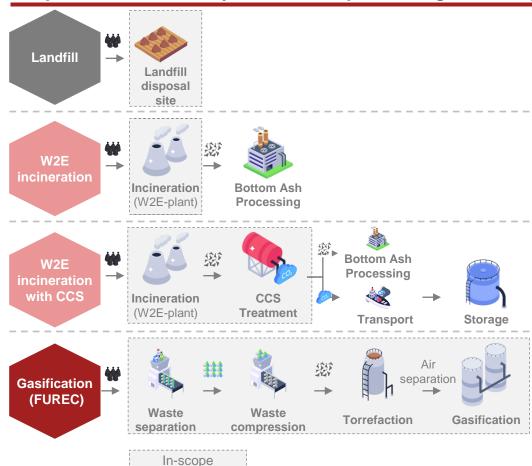
process)

capping layer) to ensure efficient

infrastructure including standard

infrastructure requirements, but

requires large-scale infrastructure to


capture, transport and store

(such as fly/bottom ash)

combustion incinerator, heat recovery

systems, and handling of by-products

contamination

Strategy& Source: RWE input; Strategy& analysis

The non-recyclable waste processing technologies are evaluated based on societal, sustainability, and business case criteria

Evaluation framework

Category	Criteria	Evaluation of non-recyclable waste processing technology's				
Societal case	Strategic fit with EU and NL ambitions	Alignment with EU and NL ambitions such as circularity, climate neutral economy, raw material security, and competitive positioning (chemical) industryScalability				
	Environmental impact	Environmental impact, including by-products treatment and NOx emissions				
Sustainability	Climate impact	Climate impact, including CO ₂ emissions and CO ₂ opportunity cost emissions				
case	Energy efficiency	Energy efficiency (%), considering the energy balance of each processing technology				
	Key financials	Key financials, including capital expenditures of corresponding facilities (in € per ton of waste capacity)				
Business case	Value of outputs	Overview of generated outputs and the value of the primary generated output, considering the mass balance of each processing technology and the projected 2030 value				

Strategy& Source: Strategy& analysis

Gasification (FUREC) produces circular and affordable syngas, avoids CO₂/NO_x emissions and is cost-effective

Comparison of non-recyclable waste processing technologies

Gasification evaluation is based on data shared by FUREC

Category	Landfill	W2E incineration	W2E incineration with CCS	Gasification (FUREC)
Societal case	 No contribution to EU circularity and climate neutrality ambitions Deprioritized in the EU waste hierarchy: target to reduce to 10% for MSW by 2035 No resource recovery potential and 	 Low contribution to EU circularity and climate neutrality ambitions Scalable technology to process non-recyclable waste (typical capacity is 400-600Kt per year) Production of electricity and heat with 	 Low contribution to EU circularity and significant contribution to climate neutrality ambitions Scalable technology (typical capacity of 400-600Kt per year) with CCS capabilities from 100-400Kt of CO₂ per year 	 Significant contribution to EU circularity and climate neutrality ambitions Scalable technology (up to 800Kt per year) Pellets allow efficient long-distance
	significant methane emissions	substantial CO ₂ emissions (methane emissions avoided compared to waste landfill)	 Production of electricity and heat with limited CO₂ emissions 	transportation • Production of circular feedstock, strengthening the chemical industry's position as a circularity frontrunner
Sustainability case (per 800Kt processed non-recyclable waste)	 800Kt CO₂-eq <u>produced</u> per year, increasing to 1,714Kt CO₂-eq with opportunity costs Residues such as leachate and solid waste require additional treatment to prevent soil contamination 	 280Kt NOx¹ emitted per year 971Kt CO₂ produced per year (incl. opportunity costs) 22% energy efficiency By-products (fly & bottom ash) require additional treatment 	 280Kt NOx¹ emitted per year 354Kt CO₂ produced per year (incl. opportunity costs) 12% energy efficiency By-products (fly & bottom ash) require additional treatment 	 13Kt NOx¹ emitted per year 120Kt CO₂ emissions (without CCS) up to 830Kt CO₂ emissions (with CCS) are avoided per year (incl. opportunity costs) 71-74% energy efficiency No residual stream
Business case	 Very low CAPEX per ton waste Limited potential for generating valuable products 	 €900-1,200 CAPEX per ton waste Competitive must-run energy products: heat and electricity with a value of €41M (2030) 	 €1,400-3,000 CAPEX per ton waste Competitive must-run energy products: heat and electricity with a value of €22M (2030) 	 €1,000-1,400 CAPEX per ton waste Attractive feedstock for chemical industry: 55Kt circular hydrogen valued at €190M (2030)
				Prices for feedstock competitive with grey/ blue hydrogen given market conform gate fees

Despite its promising potential, gasification (FUREC) remains a first-of-its-kind innovation, combining individually mature technologies

Technological maturity

Gasification evaluation is based on data shared by FUREC

Category	Criteria	W2E incineration	W2E incineration with CCS	Gasification (FUREC)	
		Significant track record: > 2,700 W2E-plants	Significant track record: 4 active W2E-plants	First-of-its-kind technology, significant track record for underlying technologies • Gasification (FUREC) is a first-of-its-kind technology, combining widely deployed pelletization, torrefaction, and entrained flow gasification plants (e.g., in China)	
	Track record	W2E incineration is a widely used waste processing technique all over the world: >2700 W2E-plants worldwide	W2E incineration with is still relatively new with limited deployment:~4 W2E-plants with CCS capabilities, worldwide		
		 Commercial technology, TRL = 9 W2E incineration is an established and mature technology with a significant commercial deployment 	Commercial technology, TRL = 9 • W2E incineration with CCS are successfully demonstrated prototype ² (TRL=7-9) with increasing levels of commercialization	Commercial technology, TRL = 9 Successful pilot TRL= 8, each with a TRL > 8 Gasification (FUREC)'s individual technologies are widely used and commercially available – overall technology has a TRL=8	
Technological case	Technological readiness levels	W2E incineration : TRL = 9	W2E incineration: TRL = 9	Pelletization: TRL = 8-9	
	(TRL) ¹		CCS treatment ² : TRL= 7-9	Torrefaction ³ : TRL = 8	
	Deep-dive on FUREC on next page		Additional improvement are required to reduce costs and increase efficiency	Entrained Flow Gasification ⁴ : TRL = 9	
	Conclusion	Commercial & highly deployed technology Fully deployed technology around the world, commercial technology TRL=9	Commercial & moderately deployed technology Limited track record for W2E plants, commercial technology TRL=9	First-of-its-kind for waste processing TRL=8, underlying technologies are individually mature but first-of-its-kind when combined for waste-processing	

¹⁾ Technology Readiness Levels is a scale from 1 to 9 to assess the maturity of a technology; TRL 1 is earliest stages of research, and TRL 9 is a fully mature and commercially deployable technology; 2) Literature indicates TRL = 7-9 – TRL is assumed as 9 due to successful commercial deployment of CCS/U technology; 3) Torrefaction as a stand-alone process is classified at TRL 8-9, with some mature applications reaching TRL=9. To remain conservative, we have opted for TRL 8; 4) Literature indicates that entrained flow gasification has TRL=8 but wide commercial deployment in China is indicative of a TRL =9; 4); Sources for TRL in appendix

FUREC addresses gasification challenges in the UK with a vital pretreatment process and proven entrained flow gasification technology

Technological case: deep-dive UK

UK context

Challenges facing gasification in the UK and lessons learned for FUREC

- The UK government promoted gasification as a cleaner and more efficient waste processing method compared to traditional incineration
- Gasification was seen as part of the UK's broader strategy to meet its CO₂ emission targets and move towards a sustainable energy solution
- The government offered substantial support in the form of subsidies, such as through the Contracts for Difference with the Green Investment Bank also co-financing some of these projects
- Despite over £1B invested and government support and once being hailed as a central component of the UK's sustainable ambitions, many gasification projects have failed leaving a legacy of financial losses and skepticism

Technical and operational challenges – The used plasma gasification technology proved highly sensitive to waste composition, with many plants unable to effectively process varying waste quality and types

Economic challenges – Technical issues have made gasification plants financially unsustainable, with high repair costs excessive parasitic loads reducing efficiency

Collapse of investor confidence – Repeated failures have eroded trust in gasification technology with numerous companies abandoning large investments in gasification

FUREC addresses these key challenges by using:

1. A vital pre-treatment process (incl. sorting, pelletizing and torrefaction) to handle the heterogeneity of the input waste

>>

2. Proven entrained flow gasification technology (instead of plasma) since this is the only commercially successful gasification technology in the world

Strategy& Source: Expert interviews; Strategy& analysis

Content

- 1. Management summary
- 2. Introduction FUREC
- 3. EU chemical industry: demand for raw materials
- 4. EU waste market: supply of non-recyclable waste
- 5. Role of alternative waste processing technologies to convert non-recyclable waste
- 6. Recommendations to stimulate alternative waste processing technologies
- 7. Appendix

Strategy&

Chemical recycling can contribute to a circular climate-neutral economy with raw material security and a competitive industry in the EU

Potential contribution of chemical recycling

Potential contribution chemical recycling to EU ambitions

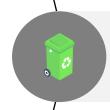
Chemical recycling technologies (e.g., pyrolysis, solvolysis, depolymerization, gasification) are complementary to mechanical recycling technologies and can convert (non-recyclable) waste into circular feedstock, while lowering GHG-emissions

Chemical recycling technologies enable the conversion of (nonrecyclable) waste into circular feedstock, reducing the dependency on import of raw materials from outside the EU

 Chemical recycling technologies can convert waste streams into circular feedstock for the EU's chemical industry, strengthening its circular and competitive position **>>**

So, the EU should build and maintain an effective and efficient waste recycling industry with a solid position for chemical recycling

Strategy& Source: Expert Input; Strategy& analysis 5


To be effective on a large scale, chemical recycling requires demand for the output, availability of feedstock and financial incentives

Requirements for chemical recycling

<u>Demand for output</u>: chemical recycling technologies can sell their produced output (circular molecules) on the market for a competitive price compared to other alternatives (e.g., RFNBO-sourced molecules¹)

Requirements for (emerging) chemical recycling technologies to be effective on a large scale

<u>Feedstock availability</u>: chemical recycling technologies can attract the required volumes of waste with the right quality across the borders of EU member states

<u>Financial incentives:</u> (emerging) chemical recycling technologies can attract sufficient financial resources to accelerate the process from financial investment decision, go-live moment and scale up

- Regulation is key to establish the requirements for (emerging) chemical recycling technologies
- Regulation needs to be harmonized across the whole EU member states and the raw material value chain (incl. waste)

Today, the EU and the NL already have multiple policies in place to establish these requirements and stimulate chemical recycling

Existing EU and NL policies to stimulate chemical recycling (non-exhaustive)

Requirements	Policy	Level	Description	Associated targets and future measures (if applicable)
	RED II & III	0	 Defines the overall EU target for renewable energy consumption, including hydrogen Amended to include additional targets for industry and transport 	 42% of hydrogen in industry must come from RFNBO (renewable fuels and non-biological origin) sources by 2030 and 60% by 2035 1% of hydrogen in transport must come from RFNBO sources by 2030 and 5.5% by 2035
Demand for	EU ETS	0	 Requires waste processors to pay for their CO2-emissions (negative externality) to stimulate processing methods that are less polluting; currently, W2E-plants are exempted 	Exemption of W2E-plants is lifted by 2028
output	National Circular Plastic Norm (NCPN)		• Sets requirements for a minimum share of recyclable plastic in new products (€267M budget is available to achieve this by 2030)	15% of plastic products must be of recyclable plastic by 2027 and 25-39% by 2030
	Waste Framework Directive	ा	 Sets requirements for waste management and treatment Sets the criteria for End-of-Waste status (which determines when waste is defined as secondary raw materials) 	 Maximum MSW landfill rate of 10% by 2035 MSW recycling target of 55% by 2025, 60% by 2030 and 65% by 2035 Packaging recycling target of 65% by 2025 and 70% by 2030
Feedstock availability	Waste Shipments Regulation	0	Sets rules for transporting waste across borders (intra- and extra- EU) to ensure the proper treatment of waste (in line with WFD¹)	Plastic waste export to non-OECD countries is banned by 2026
	EU Innovation Fund	ं	• Provides subsidies for innovative low-carbon technologies (FUREC received €108M funding)	
Financial incentives	SDE++ subsidy		 Provides subsidies for companies that generate renewable energy or reduce CO2-emissions on a large scale and are subject to an 'unprofitable top' 	

¹⁾ Waste Framework Directive

Chemical recycling can be further stimulated by adopting additional policies, e.g. embracing cross-border transport of waste within the EU

Proposed policy recommendations to further stimulate chemical recycling

Requirements	Recommendation	Level	Description
	Stimulate the use of circular feedstock in new products incl. redefinition of recycling (to stimulate high-quality recycling/ prevent downcycling)	<u></u>	 The WFD¹ states that high quality recycling output is preferred over lower quality output, but recycling targets are currently focused on weight rather than output quality; in addition, there is currently no specific target for chemical recycling The EU should stimulate the use of circular feedstock in new products by implementing targets for minimum recycled content in new products with a higher classification/rank for circular feedstock vs. virgin and bio-based alternatives
Downeyd for	Harmonize RED II & III targets for the transport and industry sector	\bigcirc	 In RED II & III, targets have been set for the industry and transport sector regarding the use of hydrogen from RFNBO-sources (renewable fuels and non-biological origin), but the targets for the transport sector are lower than for the industry The EU should Harmonize RED II & III targets for the transport en industry sector to create a common pathway and equal incentives
Demand for output	Exclude circular syngas (hydrogen) from the RED III target	<u> </u>	 RED targets exclusively focus on stimulating the use of RFNBO-sourced hydrogen, which pushes the industry demand towards RFNBO-sourced hydrogen rather than a circular alternative (e.g., from chemical recycling) The EU should exclude circular syngas from the RED targets (i.e. the target of RNFBO-sourced hydrogen is determined after correcting for circular hydrogen usage) creating a level playing field for circular and RNFBO-sourced hydrogen
	Embrace cross-border transport of waste across EU member states		 Waste Shipment Regulation sets criteria for waste shipments across the EU limiting the possibility of waste flows to move freely within the EU; in addition, some countries have set additional criteria (e.g., the NL has stricter contamination criteria for plastic waste) or import taxes The EU should embrace cross-border transport of waste across EU member states, and should harmonize the regulation across EU member states
Feedstock availability	Extend waste tender criteria with environmental impact and preferred processing method	<u> </u>	 Municipalities in the NL set out tenders for waste processers based on several criteria (e.g., price, quality): environmental impact is not always a dominant criteria in the evaluation of potential contractors NL & European municipalities should extend waste tender criteria with environmental impact (e.g., CO2-emissions) and preferred processing method (R3/4 should be preferred over R1) to favour cleaner and more waste efficient processing methods
	Financially support circularity innovations and business models	<u></u>	 Circularity innovations (like chemical recycling) can struggle to acquire financial resources from the market: besides typical innovation risks (e.g., technology risk), these innovations also face e.g., regulatory uncertainty, limited market demand and high CAPEX The EU should Financially support circularity innovations with subsidies, favourable loan conditions and/or tax deductions to accelerate the process from final investment decision, go-live and upscaling to other countries and to further develop markets
Financial incentives	Include hydrogen from waste projects in the SDE++ subsidy scheme	=	 The SDE++ is a subsidy for projects generating renewable energy or reducing CO2 emissions, but generating hydrogen from waste is currently excluded from the subsidy (whereas the CCU/S technology for W2E-plants is included) The NL should include hydrogen from waste projects in the SDE++ subsidy scheme to create equal opportunity costs for waste processing methods that are potentially relevant in the future waste landscape

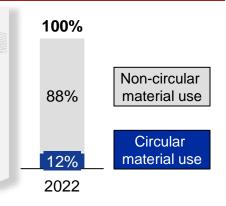
Appendix

1. Introduction FUREC

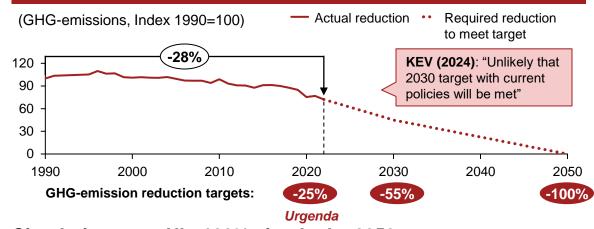
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
- 5. Details scope of study and availability and quality of information

Strategy&

57

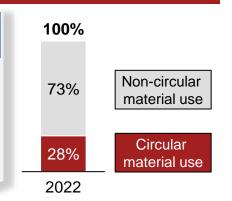

The EU and NL aim to transition towards a 100% circular, climateneutral economy by 2050; unlikely that 2030 targets will be met

Drive towards sustainability and circularity


Sustainability target EU: climate-neutral by 2050 — Actual reduction · · · Required reduction (GHG-emissions, Index 1990=100) to meet target 120 -31% EC (2024): "More action needed to reach 2030 90 climate target" 60 30 1990 2000 2010 2020 2030 2040 2050 **GHG-emission reduction targets:** -100%

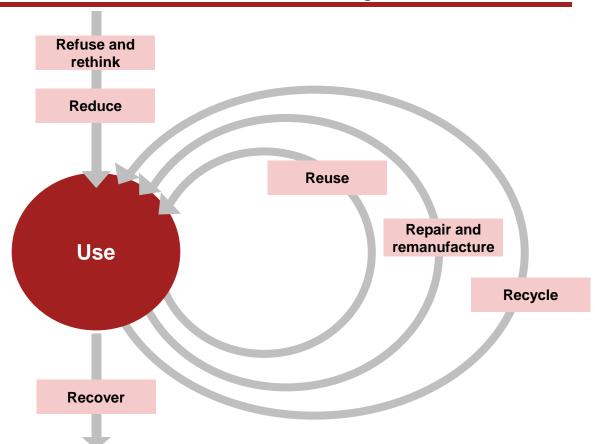
Circularity target EU: transition to a circular economy

"The transition to a circular economy is necessary to reduce pressure on natural raw materials, is necessary to achieve the EU's 2050 climate neutrality target and ensures a secure and sustainable supply of raw materials."



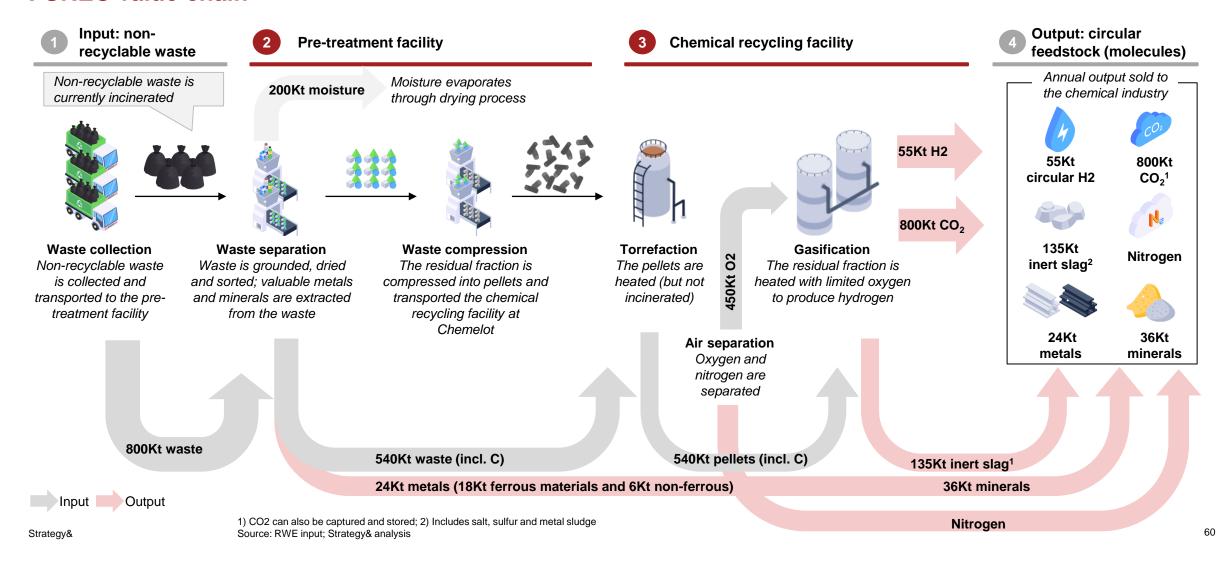
Sustainability target NL: climate-neutral by 2050

Circularity target NL: 100% circular by 2050

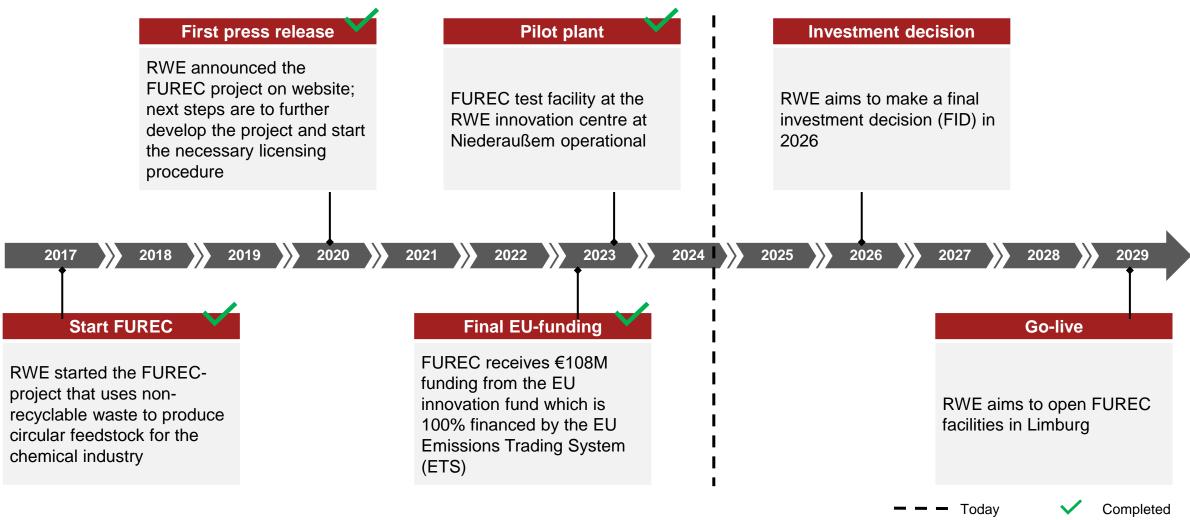

"NL is committed to reach a 100% circular economy by 2050. This is an economy that uses sustainable and renewable raw materials and that reuses materials to make us less dependent on fossil energy and foreign countries. The intermediate target is to halve abiotic raw material use by 2030."

To realize these sustainability and circularity ambitions, the raw material value chain must transform

Transformation raw material value chain


Schematic visualisation 'circular R-strategies'

- The transition to a 100% circular climate-neutral economy requires are transformation of the raw material value chain
- This can be achieved in four ways:
- Narrow the loop: use fewer products (Refuse), share products (Rethink) or produce products more efficiently (Reduce)
- 2. Slow the loop: use products longer (Reuse) by extending the product life cycle (Repair and Remanufacture)
- **3. Close the loop**: replace finite raw materials by secondary alternatives and avoid the loss of valuable raw materials (**Recycle**)
- **4. Substitution**: replace finite raw materials by renewable and biobased alternatives and recover energy from materials (**Recover**)
- Waste processing technologies such as pyrolysis and gasification (FUREC) can play an important role by offering an alternative way to close the loop


FUREC contributes to these ambitions by using non-recyclable waste to produce circular feedstock for the (chemical) industry

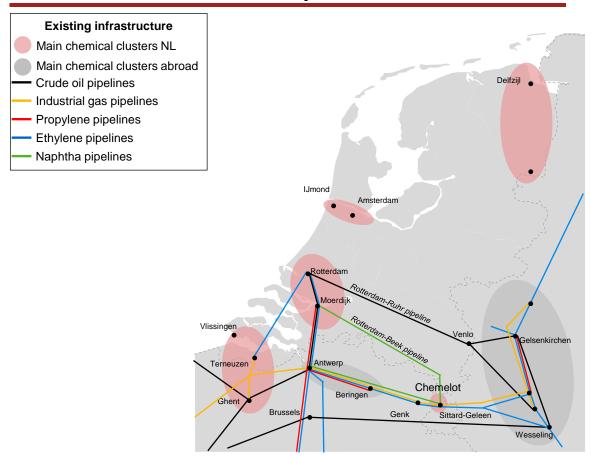
FUREC value chain

RWE received €108M EU funding and aims to make a final investment decision regarding FUREC in 2026 and go live in 2029

FUREC high-level timeline

Strategy& Source: RWE input; Strategy& analysis

Appendix


- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
- 5. Details scope of study and availability and quality of information

Strategy&

The chemical industry ecosystem in the NL consists of 5 main clusters that are well connected with each other and abroad

Overview Dutch chemical industry

Overview Dutch chemical industry

Key figures Dutch chemical industry

10th largest chemical industry in the world in terms of revenue

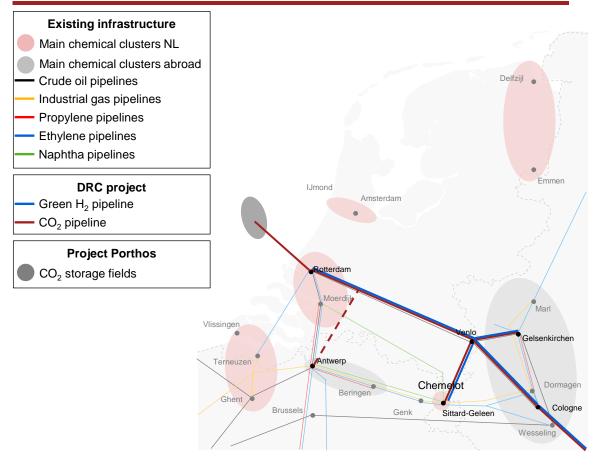
4th largest chemical industry in the EU in terms of revenue

Approximately €90 billion revenue contributing 9% to the Dutch GDP

Approximately 16% of the total exported value of the NL

Approximately 45,000 employees and 395 chemical companies

Key players (examples):


Strategy& Source: VNCI; CBS; Strategy& analysis 63

The leading position of the chemical industry in NL will be solidified by the "Delta Rhine Corridor" pipeline transporting green H2 and CO2

Upcoming pipeline connection Dutch chemical industry

Project overview

Strategy&

Key insights

- Planned connection of largest chemical clusters in Rotterdam, Antwerp, Chemelot and North Rhine-Westphalia – supplying clean energy (H₂) and CO₂ offtake to decarbonize operations
- Expected completion of construction in 2028
- Backed by:

Case study: Project Porthos

- CO₂ from Delta Rhine Corridor (DRC) to be pressurized on-shore and pumped into empty natural gas fields ~20 km off the Dutch coast
- Total capacity of ~37Mt CO₂, expect to be filled over a duration of 15 years
- Final investment decision taken in October 2023, start of construction in 2024 with expected completion in 2026
- Project set up in open model allowing various companies/industrial clusters along the DRC pipeline to benefit from the project
- Project jointly developed by Air Liquide, Air Products, Shell and ExxonMobil

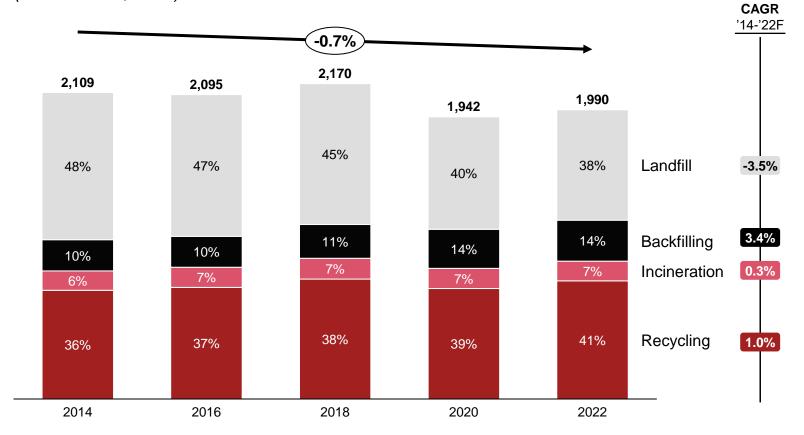
Source: Company information; Strategy& analysis

Appendix

- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
- 5. Details scope of study and availability and quality of information

Strategy&

New regulations will drive the transition towards more reduce, reuse and recycle in the EU


Overview EU regulation

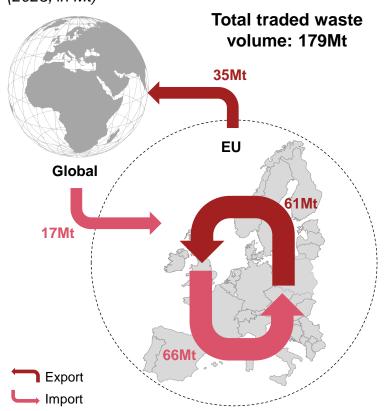
EU regulation	2025	2030	2035
Maximum landfilled MSW volume			10%
MSW recycling target	55%	60%	65%
Packaging recycling target		65%	70%
Paper packaging recycling target	75%	85%	
Glass packaging recycling target	70%	75%	
Ferrous metal packaging recycling target	70%	80%	
Aluminium packaging recycling target	50%	60%	
Plastic packaging recycling target	50%	55%	
Wood packaging recycling target	25%	30%	
Minimum recycled content plastic bottles	25%	30%	

The total processed waste volume in the EU was 1,990Mt in 2022, of which 7% is incinerated and 38% is landfilled

Overview waste market in the EU

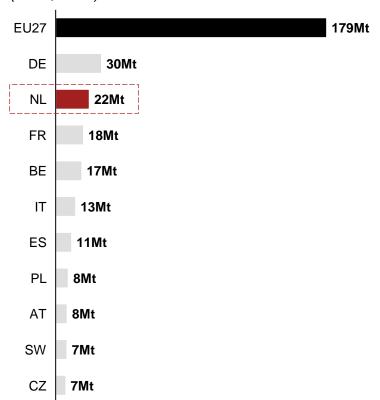
Total waste volume incl. major minerals in the EU27 per processing method (2014 – 2022, in Mt)

- The total processed waste volume in the EU slightly declined in the past decade to 1,990Mt in 2022 including major minerals (-0.7% CAGR)
- Waste processing in the EU is largely governed by directives and regulation (e.g., the EU waste hierarchy sets the hierarchy of waste processing methods)
- As a result, more waste is currently processed by more favourable processing methods at the expense of less favourable alternatives:
 - The landfill rate decreased from 48% to 38% in the past decade, mostly driven by the Landfill Directive that sets landfill requirements and landfill restrictions
 - The recycling rate increased from 36% to 41%, driven by the Waste Framework Directive and CEAP¹
- Nonetheless, a substantial amount of waste in the EU is still incinerated (7%) or landfilled (38%)


¹⁾ Circular economy action plan Source: Eurostat; EU Directive 2008/98/EC; Directive 1999/31/EC; Strategy& analysis

A substantial amount of waste is traded within and outside the EU, with waste exports becoming more challenging due to EU regulation

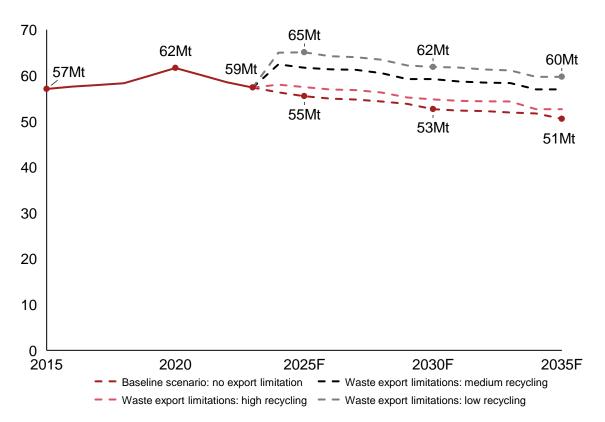
Waste trade within and outside the EU


Much waste trade within or outside EU

Traded waste volume within or outside EU27 (2023, in Mt)

NL is the second largest waste trader

Traded waste volume per EU country (top 10) (2023, in Mt)



- The total traded waste volume by EU member states (within or outside the UE) was 179Mt in 2023
- In 2023, the imported waste volume was 83Mt with the majority (66Mt) being imported from other EU countries, and the remaining part (17Mt) being imported from outside the EU
- In addition, 96Mt waste was exported: 61Mt was exported to other EU member states and the remaining 35Mt outside the EU
- Waste trade varies substantially between EU member states, with Germany, the NL, France, Belgium and Italy being the top-5 waste trading countries
- In recent year, waste export outside the EU has become more challenging due to EU regulation (e.g., plastic waste export ban from EU tot non-OECD countries)
- This regulation forces EU member states to take ownership over their waste, process waste locally in accordance with Waste Framework Directive and avoid environmental damage from waste incineration or landfill abroad

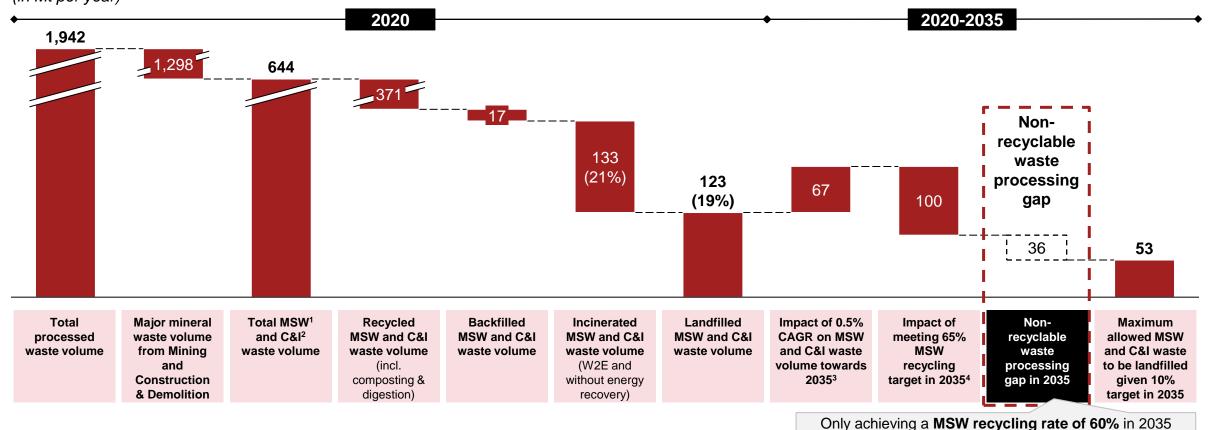
The incinerated MSW volume in the EU might increase up to 60Mt by 2035 following potential export limitations

Projected incinerated MSW volume in the EU

Projected incinerated MSW by W2E-plants in the EU27¹ (2015 – 2035F, in Mt)

- In the baseline scenario, the incinerated MSW volume by W2E-plants in the EU is expected to decrease from 59Mt in 2022 to 51Mt in 2035
- This incinerated MSW volume could be higher due to potential waste export limitations forcing EU member states to take ownership over their own waste and process waste within the EU
- Since 2023, plastic waste export from the EU to non-OECD countries is prohibited and currently the EU is investigating a complete waste export ban outside the EU
- As more waste will be processed within the EU, the incinerated MSW volume by W2E-plants in the EU is expected to increase up to 60Mt depending on the scenario (see table below)
- Evidently, there is expected to be a substantial amount of non-recyclable waste in the future waste landscape in the EU

Scenario	Assumed recycling rate of repatriated waste					
Scenario	Low	Medium	High			
Paper waste	50%	72%	95%			
Plastic waste	20%	33%	80%			
Metal waste	60%	75%	100%			
Glass waste	60%	76%	95%			
Other waste	50%	75%	95%			


¹⁾ Note: the graph shows actual incinerated MSW up to 2022, afterwards the scenario trend of the Zero Waste Europe report has been used to project incinerated waste up to 2035

Overall, a high-level waste processing outlook indicates a non-recyclable waste processing gap of 36Mt in the EU by 2035

High-level waste processing outlook in the EU

Processed waste volumes in the EU27

¹⁾ Municipal Solid Waste; 2) Commercial & Industrial; 3) Growth rate of 1.0% YoY for MSW and 0.5% for C&I based historical growth rates for MSW and C&I ('10-'18) – in line with growth projections for material use; 4) Assumed that recycled volumes of C&I improve with 1% YoY; recycled C&I waste reaches 67% compared to total C&I waste in 2035; 5) Assumed 10% target also applies for C&I

increases non-recyclable waste processing gap to 50Mt

Recent investments in W2E-plants in the EU indicate that investors expect a consistent supply of non-recyclable waste in the future

Investor appetite in W2E-plants in the EU

Fortum to sell its recycling and waste business to Summa Equity for approximately €800 million (2024)

Ardian to acquire leading European waste management and circular economy platform ARDIAN Attero (2023)

Babcock & Wilcox Enterprises to acquire VODA A/S. a Danish W2E service provider (2021)

Energy Capital Partners to acquire Biffa lpc, an integrated waste management and circular economy business (2023)

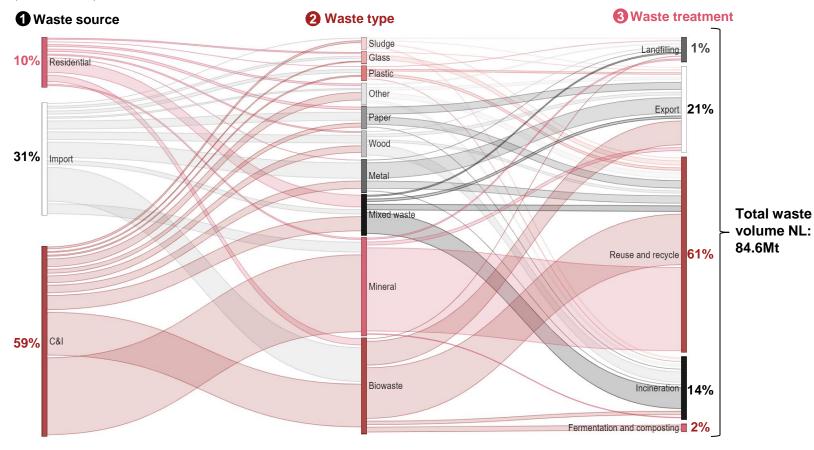
SUEZ to reintegrate major waste business after acquiring it back from Veolia (2022)

First Sentier Investors to acquire seven of Wheelabrator's W2E facilities in the UK (2021)

- In recent years, there has been much appetite from investors to acquire W2E-plants in the EU
- Investors typically have a long-term financial perspective (10-20 years) when acquiring a new business
- For W2E-plants to be profitable, they **rely on** incinerating (non-recyclable) waste to generate steam and electricity that are supplied to e.g., industrial sites or heating networks
- In other words: without sufficient input (waste) there is no output (steam and electricity) to be sold
- · This financial reality demonstrates that investors expect a consistent supply of nonrecyclable waste to be processed by W2Eplants in the future

Appendix

- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
 - Deep-dive: NL waste market
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
- 5. Details scope of study and availability and quality of information


Strategy&

72

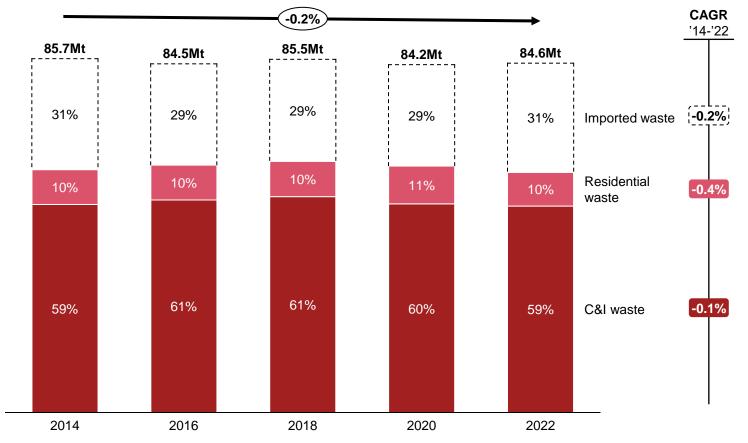
The NL generates 84.6Mt waste per year, primarily mineral and biowaste from the C&I segment that is mostly reused and recycled

Overview Dutch waste market

Sankey diagram Dutch waste market (2022, in %)

Key insights

- The total waste volume in the NL has hovered around 84-86 Mt in the past decade; the volume distribution over waste source remained stable
- 2 The volume distribution over waste types also remained stable over time, with mineral and biowaste accounting for 62%
- The volume distribution over processing method remained stable over time; the NL is frontrunner in the EU with a 61% reuse and recycle rate
- 4 Reuse and recycle is driven by mineral and biowaste: the reuse and recycle rate in the NL is 13% when these waste types are excluded
- See details point 1-4 on next pages


Strategy&

The total waste volume in the NL has hovered around 84-86 Mt in the past decade; the volume distribution over waste source remained stable

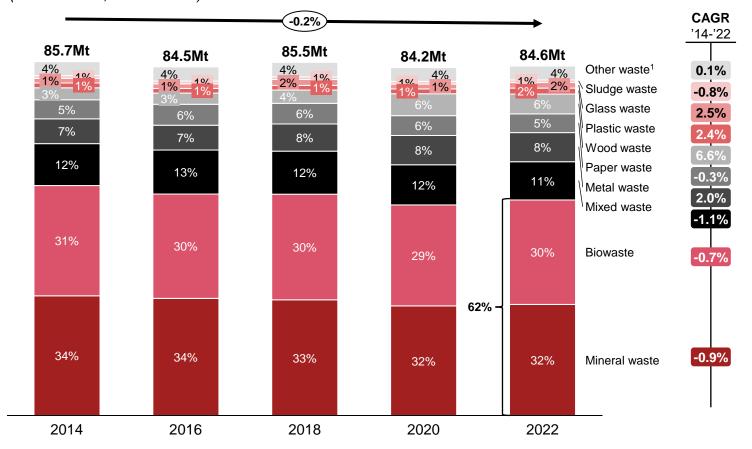
1 Dutch waste market: waste volume per waste source

Generated waste volume in the NL per waste source

(2014 – 2022, in Mt and %)

Key insights

- The total waste volume generated in the NL declined from 85.7Mt in 2014 to 84.6Mt in 2022
- Between 2014 and 2022, the total waste volume has experienced a slight decrease with a compound annual growth rate (CAGR) of -0.2%
- The C&I segment accounts for the majority (59%) of the waste volume; 31% of the waste is imported, and the remaining 10% is generated by residents
- Over time, the distribution of waste volumes among the waste sources – C&I, residential and import - has remained stable
- The NL is one of the leading waste importers in the EU:
- NL was ranked top-1 importer in the EU in 2016, 2017, 2021 and 2022
- In other years since 2014, the NL has always been in the top-4 largest importing countries in the EU


Strategy& Source: CBS; Eurostat; Strategy& analysis

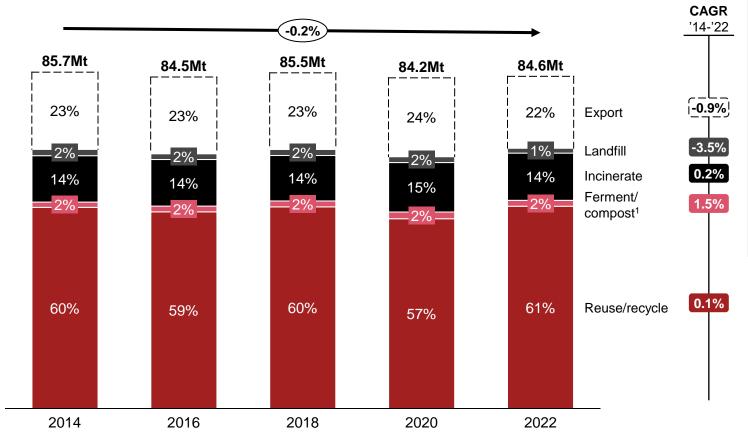
The volume distribution over waste types also remained stable over time, with mineral and biowaste accounting for 62%

2 Dutch waste market: waste volume per waste type

Generated waste volume in the NL per waste type

(2014 – 2022, in Mt and %)

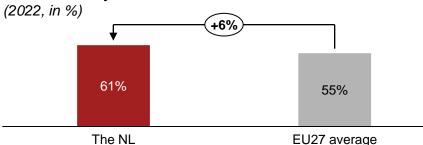
Key insights


- In the past decade, the waste volume distribution over waste type remained stable, but there have been some changes in the composition
- Waste types becoming relatively less dominant:
 - Mineral waste decreased from 34% to 32%, likely driven by the increased reuse of mineral waste on construction sites
 - Biowaste decreased from 31% to 30% as this
 is increasingly reused in industrial processes
 (e.g., orange peels or cocoa shells) and
 subsequently not registered as waste
 - Mixed waste decreased from 12% to 11%, following municipalities efforts to stimulate separation-at-source
- Waste types becoming relatively <u>more</u> dominant:
 - Wood waste increased from 3% to 6%, driven by increased separation-at-source at e.g., municipal sorting centres
 - Plastic waste increased from 1% to 2%, driven by an increase in plastic packaging use
 - Metal waste increased from 7% to 8%, mostly driven by a rise in ferrous waste (iron)

¹⁾ Other consists of rubber, textile and discarded waste Source: CBS; Afvalmonitor; Verpact; CE Delft; Strategy& analysis

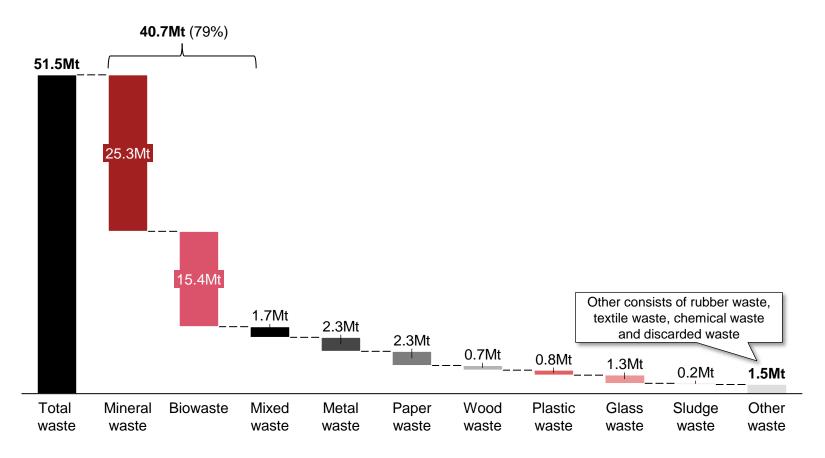
The volume distribution over processing method remained stable over time; the NL is frontrunner in the EU with a 61% reuse and recycle rate

3 Dutch waste market: waste volume per processing method


Processed waste volume in the NL per processing method (2014 – 2022, in Mt and %)

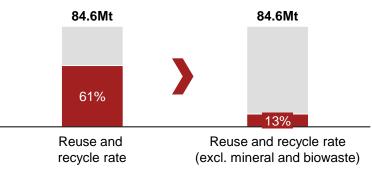
Key insights

- In the past decade, the waste volume distribution over processing method remained stable, but there have been some changes in the composition
- Less waste is landfilled (-3.5% CAGR) following policies at the EU and NL level (e.g., closure landfill sites)
- Less waste is exported (-0.9% CAGR) following e.g., the ban to export waste from the EU to non-OECD countries
- More waste is fermented/composted (1.5% CAGR) following e.g., improved biowaste separated at source
- Slightly more waste is incinerated (0.2% CAGR) and reused/recycled (0.1% CAGR)
- The NL is a frontrunner in the EU with a 61% reuse/recycle rate vs. 55% as EU average



Reuse and recycle in the NL is driven by mineral and biowaste: the reuse and recycle rate is 13% when these waste types are excluded

4 Dutch waste market: reuse and recycle


Reused and recycled waste volume in the NL per waste type (2022, in Mt and %)

Key insights

- The reused and recycled waste volume in the NL consists for 79% of:
 - Mineral waste: construction and demolition waste and is often used as backfilling in new construction projects (e.g., roads, infrastructure)
 - Biowaste: mostly C&I waste that emerges during food production processes, which is reused as animal feed or recycled during other processes
- When these two waste types are excluded, the reuse and recycle rate in the NL is 13%

Reuse and recycle rate the NL (excl. mineral and biowaste) (2022, in Mt and %)

Strategy& Source: CBS; Strategy& analysis 77

The NL is expected to have substantial volumes of non-recyclable waste in the future based on different perspectives

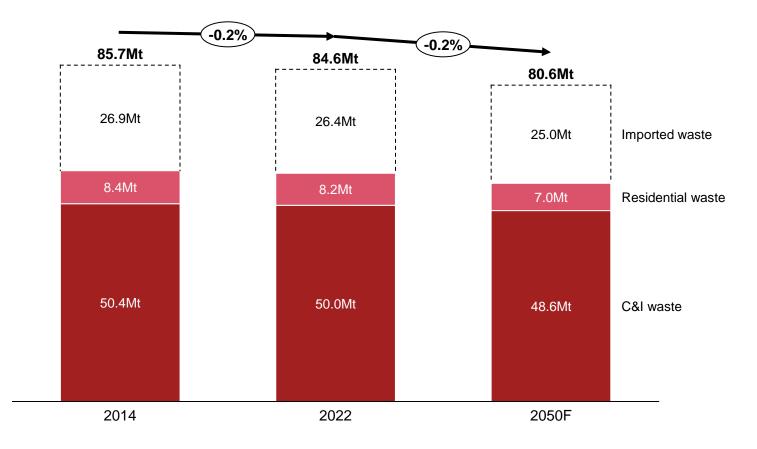
Future Dutch waste market

Details on next pages

Bottom-up evaluation future waste volume in the NL: in the future waste landscape, there is expected to be a substantial waste volume as it will be challenging to substantially reduce the total waste volume in the NL due to amongst others population growth and economic growth

In the future waste market in the NL, there is expected to be substantial volumes of non-recyclable waste based on two perspectives

2


Study on future non-recyclable waste volume in the NL: as the NL transitions to circular economy, primary raw materials will be replaced by secondary alternatives, therefore more waste will be recycled resulting in more non-recyclable waste from the recycling process

Strategy&

The total waste volume is expected to slightly decline from 84.6Mt in 2022 to 80.6Mt in 2050

1 Bottom-up evaluation future waste volume in the NL (1/2)

Projected generated waste volume in NL per waste source (2014 – 2050F¹, in Mt)

Key insights

- Between 2014 and 2022, the NL has not been able to substantially reduce the total waste volume despite active government efforts
- Going forward, it will be challenging to substantially reduce the total waste volume (see details on next page):
 - Residential waste is expected to remain stable: the effect of the growing population is offset by the effect of the decreasing average waste per capita
 - C&I waste is expected to remain stable: the effect of the growing economic output is offset by the effect of the increasing material efficiency
 - Imported waste is expected to remain stable: the NL will continue to use foreign waste to compensate for shortages

Strategy& Source: CBS; Eurostat; Strategy& analysis

It will be challenging to substantially reduce residential, C&I and imported waste, mainly due to population and economic growth

1 Bottom-up evaluation future waste volume in the NL (2/2)

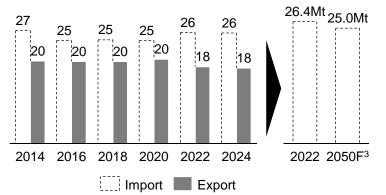
Residential waste dynamics

- Residential waste is driven by population size and average residential waste per capita
- Historically and in the future, the effect from the growing population is offset by the effect from the decreasing average waste per capita
 - The **population** has steadily grown since 2000, and is expected to continue this trend to 2050
 - The average waste per capita has steadily decrease (except for COVID-19 hick-up), and is expected to continue this trend following successful efforts to produce less waste

Population size vs. average Residential waste waste per capita volume NL $(2000 - 2050F^{1})$ (2022 - 2050F)8.2Mt Kg/capita Mln 7.0Mt Offsetting effect 300 10 2000 2050F 2022 2050F Population — — Average waste per capita

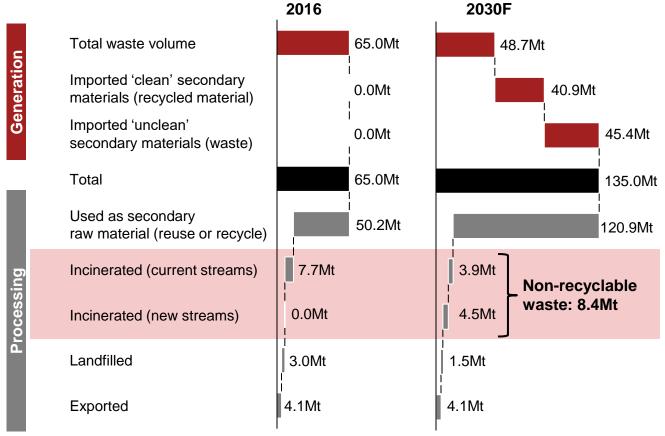
C&I waste dynamics

- C&I waste is driven by economic growth and material efficiency
- In the future, the driving effect from growing economy on C&I waste is expected to be offset by the increasing material efficiency
 - Dutch GDP has steadily grown since 2015, and is expected to continue this trend to 2050
 - Material efficiency has increased in the past years, but PBL projects that efficiency gains will experience a growth decline going forward


C&I waste GDP development vs. material efficiency growth volume NL $(2015 - 2050F^2, in Mt)$ (2022 - 2050F)50.0Mt 48.6Mt In % Bn 4% 1.5 3% Offsetting effect 1.0 2% 0.5 1% 0% 0.0 2050F 2022 2050F 2015 GDP development — Material efficiency growth

Imported waste dynamics

- Historically, the Netherland has been one of the top waste importing countries in the EU
- In addition, much imported waste is exported as NL functions as transit country in global trade
- In the future, NL is expected to continue importing substantial amounts of waste to continue its role as transit country and to meet the growing demand of secondary raw materials


¹⁾ Assumptions 2050F: population size based on CBS projections and average waste per capita based on extrapolation 2000-2022 CAGR to 2050; 2) GDP growth has been projected in accordance with PwC 2050 estimations for NL; Material efficiency growth has been extrapolated in line w/PBL trends; 3) Assumption 2050F: waste import based on extrapolation 2014-2024 CAGR to 2050 Source: CBS; Roland Berger; PBL - 'Integrale Circulaire Economie Rapportage 2023'; The Long View: How will the global economic order change by 2050? (PwC); Strategy& analysis

To meet the growing demand for secondary raw materials, more waste will be recycled in the NL resulting in more non-recyclable waste

2 Study future non-recyclable waste volume in the NL

Projected non-recyclable waste volume in the NL

(2016 vs. 2030F, in Mt)

Key insights

- To achieve a 100% circular, climate-neutral by 2050, primary abiotic raw materials are expected to be replaced by secondary (waste recycling) and bio-based alternatives
- The NL must find new sources for secondary raw materials to meet the growing demand: these are assumed to be partly clean that can be used directly in the production process and partly unclean (require processing before recycling)
- In the past, recycling has always led to a non-recyclable waste from the recycling process that would be incinerated in W2E-plants given the low quality and energy potential
- Therefore, as more waste in the NL will be recycled in the future to meet with the growing secondary raw material demand, the nonrecyclable waste volume will also increase
- The non-recyclable waste volume is expected to increase to from 7,7Mt in 2016 to 8,4Mt in 2030¹
- Evidently, there is expected to be non-recyclable waste in the future waste landscape in the NL

Appendix

- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
 - Emerging alternative waste processing technology overview
 - Comparison non-recyclable waste processing technologies
- 5. Details scope of study and availability and quality of information

Strategy&

Emerging alternative waste processing technologies are shaping the future waste market

Alternative waste processing technologies overview

Technology	Advanced sorting	Plastic chemical recycling	Biowaste processing	W2E incineration with CCS/U	
Description	Sorting unsorted waste streams on characteristics beyond material type and colour, such as material shape or previous use of material	Breaking down plastic waste into raw materials/molecules that can be reused again in the production of new products	Breaking down (organic) biowaste in the absence of oxygen, by using microorganisms (e.g., fungi, bacteria) or through chemical processes	Safely storing the produced CO2 from waste incineration underground, or reusing the CO2 in the production process	
Key technologies Non-exhaustive	Al technologyRobotic technologyAdvanced sensor technology	PyrolysisGasificationDepolymerizationSolvolysis	 Anaerobic digestion (AD)/fermentation Composting Microbial Fuel Cells (MFCs) Pyrolysis 	 Incineration with carbon capture storage (CCS) Incineration with carbon capture utilization (CCU) 	
Input	Mixed waste	Plastic waste	Biowaste	Mixed waste	
Output	Cleaner, well-sorted waste streams	Molecules	Depends on technology	Must run energy products and CO ₂	
Limitations	High investment and operational costsTechnical malfunctions	 Requires specific and clean waste streams (except gasification) Does not achieve 100% yield (e.g., 50% for pyrolysis¹) 	 Requires specific and clean waste streams Long processing time (e.g., weeks/months for AD/fermentation) 	 Complex infrastructure and logistical requirements Energy loss from CCS/U technology 	
Players	myne TOMRA	BLUEALP MOGRSN	BioBTX Arcelor/Hittel Sommenende Biogas-	Twence TOSHIBA	
Non-exhaustive	RECYCLEYE NIHOT MACHINEX	MURA DI PLASTICION DI PLASTICI	Pyrocore biogreen PyreG	AVR.	

¹⁾ Plastic-to-plastic yield (amount of new plastic produced from plastic waste sent to recycling) is approximately 50% Source: Nationaal Testcentrum Circulaire Plastics – 'Recycling pathways of post-consumer plastic packaging waste in Europe' (2022); Journal of Cleaner Production; PBL & TNO – 'Decarbonisation options for the Dutch waste incineration industry' (2022); Renewable Carbon Publications; CE Delft; Company websites; Strategy& analysis

AI, robotics and advanced sensors are emerging technologies, allowing waste sorting on attributes, beyond material type and colour

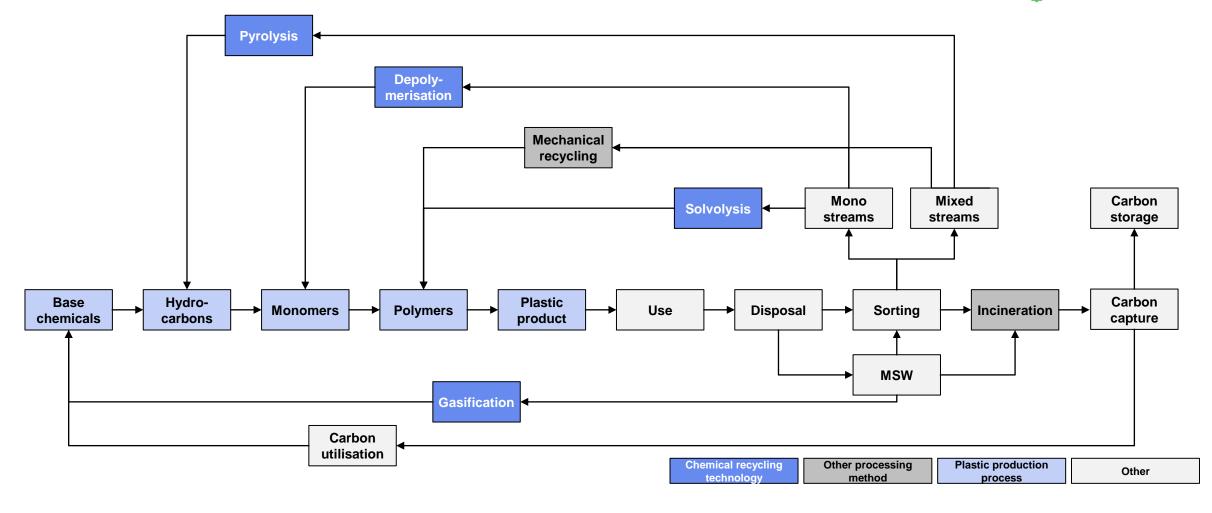
Advanced sorting (1/2): technology overview

Technology	Description	Input	Output	Pros	Cons
Al technology	 Artificial Intelligence (AI) employs computer vision, machine learning, and data analytics to enhance the sorting and recycling process By leveraging AI algorithms, this technology can automatically identify and sort various material types from mixed waste streams, and detect and remove contaminants AI algorithms can analyze large amounts of data to optimize the process and make it more efficient 	Mixed unsorted waste streams	Cleaner, well-sorted waste streams	 ✓ Sorting on attributes beyond material type and colour ✓ Higher sorting speed ✓ Higher sorting accuracy 	 High investment and operational costs (e.g., hardware and training) Comprehensive and up-to-dataset required
Robotic technology	 Robotic technology use a mechanical system coupled to sensors to detect, classify and remove objects of interest from an unsorted waste stream The most common type is the pick and place robot, which has one or more robotic arms that are equipped with a gripper 	Mixed unsorted waste streams	Cleaner, well-sorted waste streams	 ✓ Sorting on attributes beyond type and colour ✓ Simultaneously sort multiple type of objects (e.g., air jets are binary) ✓ Higher sorting quality, consistency and availability ✓ Lower human labour 	 Low sorting speeds (than e.g., air jets) High investment and operational costs (e.g., infrastructure and maintenance) Operational challenges (e.g., malfunction)
Advanced sensor technology	 Currently, NIR and RGB sensors are typically used to classify material based on their material type and colour New sensor technologies such as LIBS, MIR and THz can gather more information on materials by using innovative techniques such as different or wider range of the electromagnetic spectrum 	Mixed unsorted waste streams	Cleaner, well-sorted waste streams	 ✓ Sorting on attributes beyond material type and colour ✓ Higher sorting accuracy 	 Typically slower response time than current sensors Higher costs than conventional sensors Some sensors have low maturity

Advanced sorting

Many advanced sorting companies are emerging that promise improved sorting performance

Advanced sorting (2/2): market examples


	Myne Xorter	RecycleEye QualiBot	Nihot Max-Al Robotic Sorter	MachineX SamurAl Robot	TOMRA Technologies
Input	Post-consumer aluminum waste	Mixed waste	Mixed waste	Mixed waste	Mixed waste
Process	Al-powered metals waste sorting facility: Xorter machine sorts aluminium, e-waste and copper waste by alloy	Al-powered robot technology that separates recyclable materials from a mixed waste stream with up to 55 picks per minute	Sorting technology that uses AI, robotics and machine learning technology to separate valuable materials from mixed waste streams	Al-powered robot technology that separates recyclable materials from a mixed waste stream with up to 70 picks per minute and 95% efficiency	Multifunctional sensor technology combined with near- infrared spectroscopy, visual spectrometry and deep learning to identify and sort various material types
Output	Aluminium metal alloys	Sorted recyclable waste: non- ferrous metals, fiber and plastics	Sorted recyclable waste: plastics, cardboard, paper and aluminum/steel cans	Sorted recyclable waste (various waste types)	Sorted recyclable waste: plastic, e-waste, wood, paper, packaging and textiles
Players	myne	RECYCLEYE	NIHOT®	MACHINEX	▶ TOMRA
Country				*	

Strategy& Source: Company websites; Strategy& analysis

Pyrolysis, depolymerisation, solvolysis and gasification are emerging chemical recycling technologies for plastic waste

Plastic chemical recycling (1/3): chain

These technologies recover molecules from plastic waste – most require relatively clean plastic waste streams to yield high-quality outputs

Plastic chemical recycling (2/3): technology overview

Technology	Description	Input	Output	Pros	Cons
Pyrolysis	Thermal decomposition process that involves heating waste (typically >500°C) in an oxygen-free environment, providing enough heat to deconstruct plastic waste into smaller molecules that can be further processed into new chemicals	Plastics (e.g., PET, PP, PS, PA)	Naphtha/feeds tock	 ✓ Able to process mixed and contaminated plastic waste streams ✓ Output can be reprocessed into virgin-like material 	 High investment and operational costs (e.g., high energy use) Strict requirements on quality input feed (specific and clean waste) 50% plastic-to-plastic yield
Gasification	Chemical process where waste materials are heated to an extremely high temperature (1000 – 1500 °C) with a limited amount of oxygen, breaking down the molecules and producing syngas (mainly hydrogen, carbon monoxide, carbon dioxide, methane, and nitrogen)	All plastic types (also able to process non-recyclable waste)	Syngas and other residual products	 ✓ Output (syngas) can be used for various applications (e.g., methanol, ammonia) ✓ No requirement on quality input feed 	 High investment and operational costs (e.g., high energy use) Complex technology and infrastructure
Depoly- merization	Chemical process that uses controlled chemical or thermal reactions and heat to break down/depolymerize plastic polymers in their constituent monomers and oligomers	Plastics (e.g., PET, PA)	Monomers/olig omers	 ✓ High quality monomer recovery ✓ Less energy intensive then e.g., pyrolysis and gasification 	 Strict requirements on quality input feed (specific and clean waste) High operational costs Complex by-product handling to avoid environmental harm
Solvolysis	Chemical process that uses a solvent to depolymerize plastics into smaller molecules (not always classified as chemical recycling)	Plastics (e.g., PET)	Polymers	✓ High quality polymer recovery✓ No/little energy consumption	 Strict requirements on quality input feed (specific and clean waste) Use of potentially hazardous solvents
Fluid catalytic cracking (FCC)	Process that breaks down long polymer chains, particularly non-recyclable types like polyethylene and polypropylene, into smaller hydrocarbon molecules using a catalyst at medium high temperatures (>350°C)	Plastic (e.g., PE, PP)	Liquid and gaseous hydrocarbons, waxes	✓ High value output	★ High energy consumption

Recently, investor appetite in these chemical recycling technologies is growing

Plastic chemical recycling (3/3): market examples

	DOW & Mura	SABIC – Plastic Energy	BlueALP - Shell	GR3N	UBQ
Input	End-of-life plastic waste	End-of-life plastic waste	End-of-life plastic waste	End-of-life plastic (PET) waste	Non-recyclable waste (incl. plastic)
Process	Advanced pyrolysis plant that will convert mixed plastic waste into hydrocarbon liquids (used to build plastics)	Advanced recycling plant with capacity of 20Kt per year, applying pyrolysis for conversion of plastic waste	Two new pyrolysis units with a capacity of 17Kt per year (BlueAlp has a patented pyrolysis process)	Microwave-assisted depolymerization (MADE) technology to produce PET and polyester from recycled monomers	Conversion of non-recyclable waste into thermoplastic composite without residual fraction via patented waste conversion process
Output	Hydrocarbon oil	TACOIL, alternative feedstock to create virgin-quality food-grade plastics	High-quality pyrolysis oil (with low energy consumption)	Virgin-quality monomers	Thermoplastic composite (fossil-based plastic alternative)
Players	DOW MURA TECHNOLOGY	ا PLASTIC ا ENERGY	BLUEALP Accelerating Plastic Recycling	(IOGR 3N	ubq
Country					\$

Strategy& Source: Company websites; Strategy& analysis

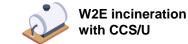
AD/fermentation, composting, MFCs and pyrolysis are emerging technologies to process biowaste

Biowaste processing (1/2): technology overview

Technology	Description	Input	Output	Pros	Cons
Anaerobic digestion (AD)/fermentation	Biological process that breaks down biowaste by bacteria to produce biogas (a mixture of methane and carbon dioxide which can be used as a renewable energy source) and digestate (which can be used as a nutrient-rich fertilizer)	Biowaste	Biogas and digestate	 ✓ Alternative for fossil-based natural gas ✓ Output can be used for various applications (e.g., fuel, biomethane) ✓ Avoids damaging methane emissions in the atmosphere 	 Strict input requirements: only applicable for well-sorted uncontaminated waste stream High investment and operational costs Long processing time (weeks/months) Environmental concern (e.g., toxic spills)
Composting	Biological process that decomposes organic waste by microorganisms (e.g., fungi and bacteria), resulting in the production of nutrient-rich soil amendment (compost) that can be used as fertilizer	Biowaste	Compost	 ✓ Replaces chemical fertilizers ✓ Low cost compared to other technologies ✓ Can be done on small scale (e.g., households) 	 Strict input requirements: only applicable for well-sorted uncontaminated waste Low output flexibility (can only be used as fertilizer) Long processing time (months)
Microbial Fuel Cells (MFCs)	Biological process that uses microorganisms to break down the organic matter and release electrons, which can be captured and used to generate electricity	Biowaste	Electricity	 ✓ Alternative source of fuel ✓ Low carbon emission ✓ Can be applied in area lacking electricity 	 High investment and operational costs Lower power output Electrodes lack durability and strength Low growth rate of microbes
Pyrolysis	See plastic waste chemical recycling technologies				

The potential for these biowaste processing technologies is illustrated by recent market examples

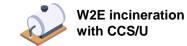
Biowaste processing (2/2): market examples


Biowaste processing

	BioBTX	Pyrocore	ArcelorMittal & Biogreen	Sonnenerde & Pyreg	Werlte Biogas Plant
Input	Biowaste (and plastic waste)	Biowaste	Biowaste (mainly wood)	Biowaste (e.g., grain husks, sunflower shell, pulp mud)	Biowaste (e.g., corn and grass silage, cattle and poultry manure)
Process	Conversion of biomass (and mixed plastic waste) into renewable carbon via pyrolysis and catalytic upgrading	Conversion of biowaste by using pyrolysis technology in which waste is heated under high temperatures (600-900°C) without oxygen	Clean syngas production plant to reduce CO2-emissions produced during the steelmaking process	Industrial biochar production plant leveraging Pyreg's pyrolysis technology	Anaerobic digestion installation to transform biowaste into biomethane and digestate with 110,000 m3 throughput per year
Output	Renewable carbon	Syngas and bio-char	Biogas and biochar	Biochar	Biomethane and digestate
Players	BioBTX	PyroCore Move to circularity	ArcelorMittal Biogreen®	PYREG NET ZERO TECHNOLOGY	Biogas-
Country					

Strategy& Source: Company websites; Strategy& analysis

W2E-plants are increasingly accompanied with CCS/U technology to avoid CO2-emissions from the waste incineration process


W2E incineration with CCS/U (1/2): technology overview

Technology	Description	Input	Output	Pros	Cons
W2E incineration with CCS	W2E-plant that incinerates waste to generate baseload energy products, can be extended with carbon capture storage (CCS) technology in which CO2 is captured and safely stored underground	Non-recyclable waste	Baseload energy products (steam and electricity)	 ✓ No CO2-emission in the atmosphere from W2E-plant (climate-neutrality) ✓ Scalable technology to other applications (e.g., industry, transport) ✓ No waste input requirement 	 CO2 is not reused to produce new products Complex infrastructure and logistical requirements (e.g., storing CO2 in empty gas fields under north sea) High costs for CCS tech Energy loss from CCS tech
W2E incineration with CCU	W2E-plant that incinerated waste to generate baseload energy products, can be extended with carbon capture utilization (CCU) technology in which CO2 is captured and used directly (i.e., not chemically altered) or indirectly (transformed) in various products (e.g., synthetic fuels, chemicals or building aggregates)	Non-recyclable waste	Baseload energy products (steam and electricity) and CO2	 ✓ No CO2-emission in the atmosphere from W2E-plant (climate-neutrality) ✓ CO2 is reused to produce new products ✓ Scalable technology to other applications (e.g., industry, transport) ✓ No waste input requirement 	 Complex infrastructure and logistical requirements (e.g., transporting CO2 from W2E-plants to users) High costs for CCU tech Energy loss from CCU tech

The potential for these technologies is illustrated by recent market examples

W2E incineration with CCS/U (2/2): market examples

	Twence	AVR Duiven	Saga City Plant	Klementsrud	NETOX
Input	Non-recyclable waste	Non-recyclable waste	Non-recyclable waste	Non-recyclable waste	Non-recyclable waste
Process	W2E-plant that captures, stores and reuses CO2 as raw material in the greenhouse horticulture sector and dry ice production,n using CCU technology	W2E-plant that captures, stores and reuses 60k tonnes of CO2 per year as raw material in the greenhouse horticulture sector, using CCU technology	W2E-plant that captures, stores and reuses 10 tonnes CO2 per day to cultivate crops and create algae cultures at nearby farms, using CCU technology	W2E-plant that captures and stores 400k tonnes of CO2 to become reality in 2026, by using CCS technology	W2E-plant that captures and stores CO2 to become reality in 2030, by using CCS technology
Output	Baseload energy products and circular CO2	Baseload energy products and circular CO2	Baseload energy products and circular CO2	Baseload energy products	Baseload energy products
Players	7 wence	AVR.	TOSHIBA	@ fortum	(1) SINTEF
Country				##	#=

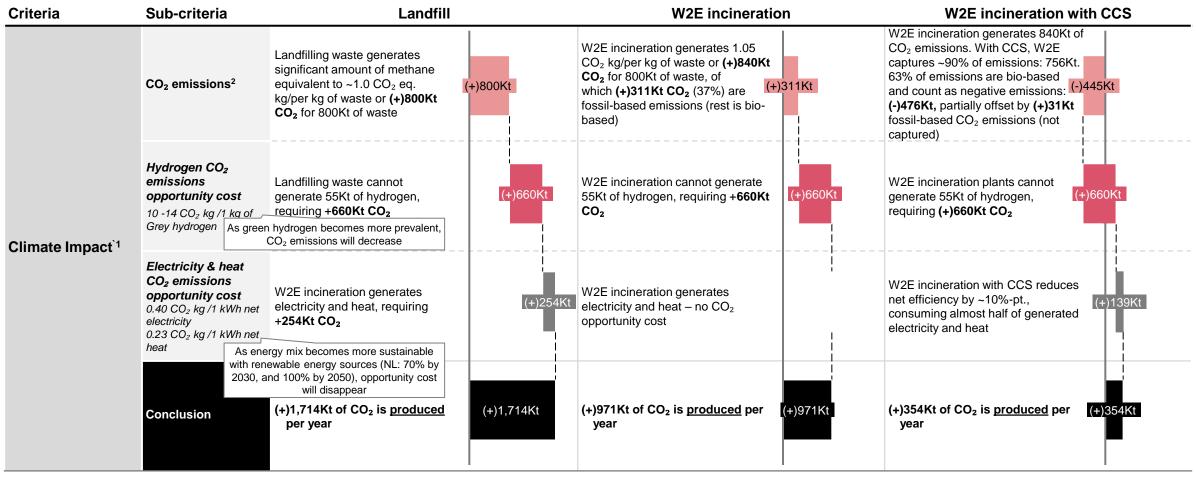
Strategy& Source: Company websites; Strategy& analysis

Appendix

- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
 - Emerging alternative waste processing technology overview
 - Comparison of waste processing technologies for non-recyclable waste
- 5. Details scope of study and availability and quality of information

Strategy&

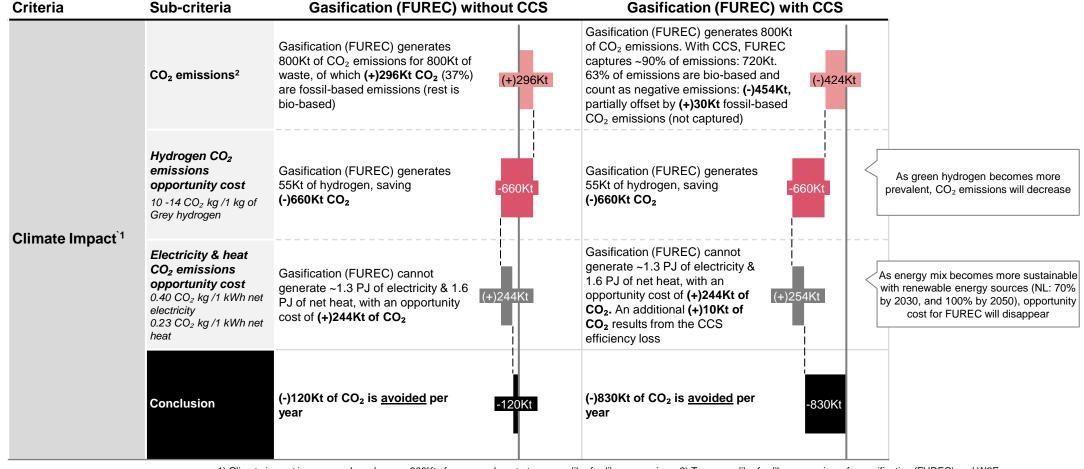
Societal case: strategic fit with EU and NL ambitions


Criteria	Sub-criteria	W2E incineration	W2E incineration + CCS	Gasification (FUREC)
	Circularity	Production of electricity and heat W2E incineration is classified as R1 with energy recovery producing heat and electricity without producing molecules. Some EU countries remain reliant on W2E incineration, others (e.g., NL) are focused on reducing incinerated waste W2E incineration supports a scalable waste management strategy, with large scale facilities (400-600Kt capacity), best-suited to process waste closer to its source	 Production of electricity and heat No contribution for CCS as carbon is stored, but not reused W2E incineration plants, whether original or retrofit, are becoming more scalable, with CCS capacities ranging from 50 to 400Kt CO₂ per year 	Production of circular feedstock Gasification (FUREC) is classified as R3 and R4, using non-recyclable waste to produce circular secondary raw materials (e.g., hydrogen, carbon) to produce new (chemical) products Gasification (FUREC) enables a scalable waste management strategy, with large-scale facilities (800Kt capacity), with the ability to process waste from multiple regions via efficient transport (eliminated moisture via pelletization)
Strategic fit with	Climate neutrality	Significant CO ₂ emissions • W2E incineration leads to substantial CO ₂ emissions, but saves significant methane emissions (compared to landfilling waste)	Limited CO₂ emissions • W2E incineration with CCS has limited CO₂ emissions as well as saving significant methane emissions (compared to landfilling waste)	Production of CO ₂ free outputs • Gasification (FUREC)'s output (circular hydrogen) is an alternative for grey hydrogen, avoiding substantial CO ₂ emissions. FUREC with CCS avoids further emissions
EU and NL ambitions	Raw material security	Production of heat & electricity (W2E) • W2E incineration with energy recovery contributes to a stable supply of electricity and heat	Production of heat & electricity (W2E) • W2E incineration with energy recovery contributes to a stable supply of electricity and heat • No contribution for CCS as carbon is stored but not reused	Local production of raw materials • Gasification (FUREC) produces circular secondary raw materials locally (e.g., hydrogen, carbon), reducing dependency on foreign countries to achieve a stable supply of raw materials
	Competitive position (chemical) industry	Improving supply security Incinerators may supply heat to the chemical industry	Improving supply security • Incinerators may supply heat to the chemical industry	Enhancing circularity position • Gasification (FUREC) enables the chemical industry to adopt circular production, meet regulations, and enhance its circularity position
	Conclusion	Moderate strategic alignment Moderate contribution to ambitions: strong scalability for waste processing, production of electricity and heat with substantial CO ₂ emissionsy	High strategic alignment High contribution to ambitions: increasing scalability for waste processing and CC capture, CO ₂ free production of electricity and heat	Very high strategic alignment Significant contribution to ambitions: strong scalability for efficient waste processing, local CO ₂ free production of circular feedstock, and strong position for the chemical industry

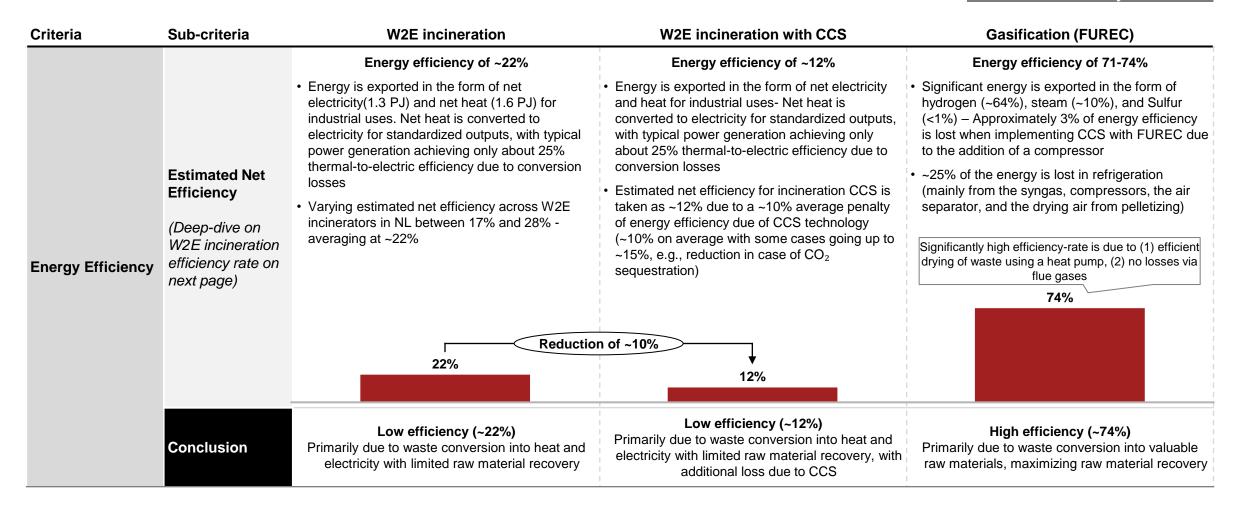
Sustainability case: environmental impact (1/5)

Criteria	Sub-criteria	W2E incineration	W2E incineration + CCS	Gasification (FUREC)
	Treatment of by-products	 Fly ash and bottom ash By-products are fly ash and bottom ash, constituting ~25% of input mass and requiring additional treatment While the treatment of bottom ash is standard and cost-effective, treatment of fly-ash is more intensive due to hazardous substances 	 Fly ash and bottom ash By-products are fly ash and bottom ash, constituting ~25% of input mass and requiring additional treatment While the treatment of bottom ash is standard and cost-effective, treatment of fly-ash is more intensive due to hazardous substances Additional complexity (handling, processing, disposal) from storage or utilization of captured CO₂ 	No residual stream By-products are inert slag, mineral, salt, filter cake without any residual stream – all outputs are sold to chemical industry Filtration and scrubbing systems are limited – by-products are periodically disposed-of
Environmental impact	NOx (nitrogen) emissions Per 800Kt processed non- recyclable waste	280Kt NOx W2E incineration generates the following NOx emissions 280Kt NOx	280Kt NOx W2E incineration with CCS generates the following NOx emissions with potential for further reduction: 280Kt NOx	13Kt NOx Gasification (FUREC) generates the following NOx emissions: 13Kt NOx
	Conclusion	High environmental impact 280Kt of NOx emissions and (+)1,500Kt of	High environmental impact 280Kt of NOx emissions	Limited environmental impact Limited +13Kt NOx emissions

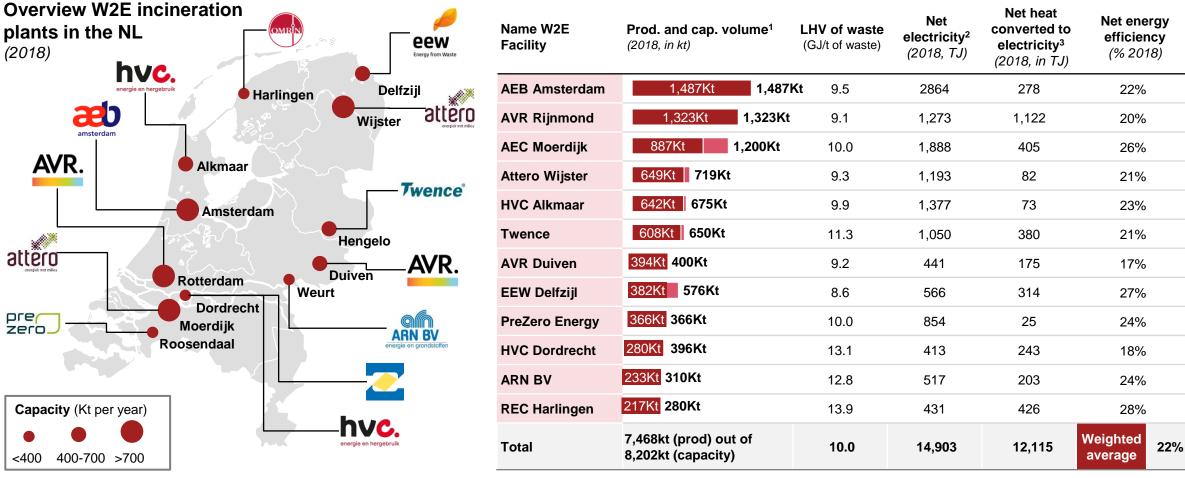
Sustainability case: climate impact (2/5)


Landfill, W2E incineration and W2E incineration with CCS

¹⁾ Climate impact is measured yearly, per ~800Kt of processed waste to ensure like-for-like comparison; 2) To ensure like-for-like comparison, for gasification (FUREC) and W2E incineration (with and without CCS), 37% of emissions from MSW are considered to be fossil-based (as indicated for NL in mentioned PBL report); Source: RWE Input; Strategy& analysis, PBL – 'Decarbonization options for the Dutch Waste Incineration Industry' (2022); Institute for Energy Economics and Financial Analysis (IEEFA) – 'Carbon Capture at Boundary Dam 3: Still Underperforming, a Failure' (2021); International Energy Agency (IEA) – 'Carbon Capture, Utilisation and Storage' (2023); NV afvalzorg Holding – 'Landfilling of waste: accounting of greenhouse gases and global warming contributions' (2009)


Sustainability case: climate impact (3/5)

Gasification (FUREC) with/without CCS

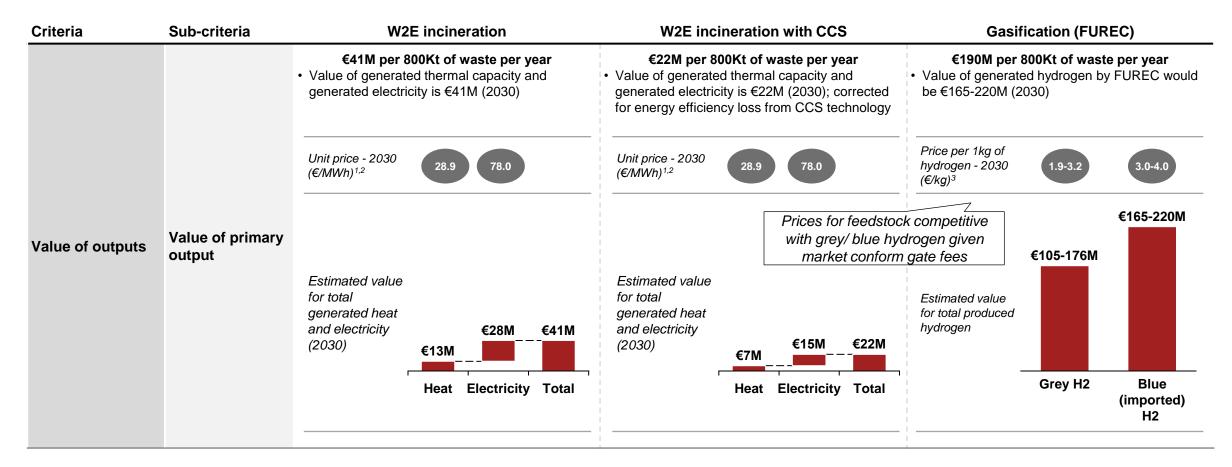


¹⁾ Climate impact is measured yearly, per ~800Kt of processed waste to ensure like-for-like comparison; 2) To ensure like-for-like comparison, for gasification (FUREC) and W2E incineration (with and without CCS), 37% of emissions from MSW are considered to be fossil-based (as indicated for NL in mentioned PBL report); Source: RWE Input; Strategy& analysis, PBL – 'Decarbonization options for the Dutch Waste Incineration Industry' (2022); Institute for Energy Economics and Financial Analysis (IEEFA) – 'Carbon Capture at Boundary Dam 3: Still Underperforming, a Failure' (2021); International Energy Agency (IEA) – 'Carbon Capture, Utilisation and Storage' (2023)

Sustainability case: energy efficiency (4/5)

Sustainability case: deep-dive energy efficiency (5/5)

¹⁾ Production volumes exceeding the stated capacity are expressed as 100% of capacity in this overview; 2) Net electricity is calculated as 85% of gross generated electricity; 3) Net heat is converted to electricity to ensure outputs are standardized. In typical power generation, only about 25% of thermal energy is converted into electricity due to conversion losses; Source: Strategy& analysis; PBL – 'Decarbonisation options for the Dutch industrial gases production' (2022); Rijksoverheid – 'Afvalverwerking in Nederland' (2018); Annual reports of W2E-plants; Strategy& analysis


Business case: key financials (1/3)

Criteria	Sub-criteria	W2E incineration	W2E incineration with CCS	Gasification (FUREC)
Key financials ¹	Capital expenditures	• W2E incinerators' capital expenditures are ~€1000 per ton of waste, decreasing as overall plant capacity increases due to economies of scale • W2E incinerators have an average capacity of 170Kt of waste processing per year, with a wide range of 80-500Kt of waste per year. Examples of W2E incinerators include: Allerton Waste Recovery Park (UK) Capex: €384M Capacity: 320Kt per year Slough Multifuel Project (UK) Capex: €480M Capacity: 480Kt per year Avonmouth Resource Recovery (UK) Capex: €300M Capacity: 320Kt per year	• W2E incineration plants with CCS (original or retrofit installations) require significant investments due to the required additional infrastructure (e.g., compression, liquefaction, transport to storage or utilization facilities) • Capex requirements rise with higher carbon capture targets, requiring more extensive upgrades or adaptations of existing systems • Capacity of W2E incinerators (new and/or retrofitted CCS) varies widely from 50 up to 400Kt CO₂ per year (retrofitted project often have less carbon capture capacity). Examples W2E incinerators with CCS include: Klemetsrud project (Norway) -2,700€/kt Capex: €1,050M Capacity: 400Kt per year Amager Bakker Plant (Denmark) Capacity: 400Kt per year	€1,000-1,400 per ton of waste Gasification (FUREC) has a larger scale of operations, with plant capacity (up to 800Kt of waste per year) far exceeding other chemical recycling processes Gasification (FUREC)'s capex per ton of waste incorporates the logistical and ecosystem requirements (e.g., waste separation, compression, torrefaction) in a cost-effective waste processing technology As plant size increases, economies of scale allow gasification (FUREC) for greater efficiency in handling larger volumes of waste, further reducing capex per ton
	Conclusion	€900-1,200 per ton of waste Cost-effective waste processing technology and high waste processing capacity (up to 500Kt of waste per year)	€1,400-3,000 per ton of waste Significant additional investment due to CCS technology and improving waste processing capacity (up to 400Kt CO₂ per year)	€1,000-1,400 per ton of waste Cost-effective waste processing technology and high waste processing capacity (up to 800Kt of waste per year)

Business case: value of outputs (2/3)

Criteria	Sub-criteria	W2E incineration	W2E incineration with CCS	Gasification (FUREC)
Value of outputs ¹	Overview of outputs	Must-run energy products and by-products Incineration converts 800Kt of waste into heat and electricity and by-products:	Must-run energy products, by-products & CO ₂ • Incineration converts 800Kt of waste into the following products:	Syngas and by-products • FUREC converts 800Kt of waste into syngas (incl. 55Kt of hydrogen) and by-products:
		By-products 20Kt 180Kt 10Kt Metals Bottom ash Fly ash	By-products 20Kt 180Kt 10Kt Metals Bottom ash Fly ash	By-products 135Kt Nitrogen 24Kt 36Kt metals minerals
		 By-products (metals, bottom & fly-ash) constitute 20-30% of input mass – these require treatment CO₂ is emitted and not captured + stored 	 By-products (metals, bottom & fly-ash) constitute 20-30% of input mass – these require treatment CO₂ (840Kt) is captured + stored 	No residual stream: all by-products are sold to the (chemical) industry
	Value of primary output (Deep-dive on next page)	 €41M per 800Kt of waste per year Heat and electricity are must-run energy products (with available alternative sources such as nuclear, solar, wind, etc.) Value of generated electricity and heat is €41M (2030) 	 €22M per 800Kt of waste per year Heat and electricity are must-run energy products Value of generated electricity and heat is €22M (2030) 	 €190M per 800Kt of waste per year Circular hydrogen commands higher market prices. Potential for demand for secondary raw materials is high with few available alternatives Value of generated hydrogen by FUREC – considered to be green – would be €190M
	Conclusion	Outputs are must-run energy products (heat and electricity) with value of €41M	Outputs are must-run energy products (heat and electricity) with value of €22M	Outputs is valuable syngas for chemical industry with value of €190M

Business case: deep-dive on value of primary output (3/3)

¹⁾ Price of generated heat is based the forward price in the market for year 2027 – assumed to be remain in the same order of magnitude in 2030; 2) Price of generated electricity is based the forward price in the market for year 2027 – assumed to be remain in the same order of magnitude in 2030; 3) Price of grey and blue hydrogen are based on cost of production in 2030 from the PBL report below. Importing blue hydrogen as blue ammonia incurs additional costs due to conversion, transportation, and reconversion processes; Source: RWE input; RVO; PBL – 'Productie, import, transport en opslag van waterstof in Nederland' (2024); EHB (Energy Delta Institute) – 'Analysing the future demand, supply, and transport of hydrogen' (2021); European Energy Exchange (EEX) – 'Market Data for Power Futures: Unit price (€ per MWh) for electricity based on last recorded baseload price.' (Accessed November 2024); Strategy& analysis

Technological case: deep-dive on TRL

Criteria **W2E** incineration **W2E incineration with CCS Gasification (FUREC)** Commercial technology, TRL = 9 Commercial technology, TRL = 9 Commercial technology, TRL = 9 W2E incineration is an established and mature W2E incineration with CCS are successfully Successful pilot TRL= 8, each with a TRL > 8 demonstrated prototype² (TRL=7-9) with Gasification (FUREC)'s individual technologies technology with a significant commercial increasing levels of commercialization are widely used and commercially available deployment overall technology has a TRL=8 W2E incineration: TRL = 9 W2E incineration: TRL = 9 **Pelletization:** TRL = 8-9 Technological readiness levels¹ CCS treatment²: TRL= 7-9 Torrefaction³: TRL = 8 **Entrained Flow** Additional improvement are required to reduce Gasification4: TRL = 9 costs and increase efficiency

¹⁾ Technology Readiness Levels (TRL) is a scale from 1 to 9 to assess the maturity of a technology, TRL 1 is earliest stages of research, and TRL 9 is fully mature, commercially deployable technology; 2) Literature indicates 7-9 levels. However, TRL is assumed as 9 due to successful commercial deployment of CCS technology; 3) Torrefaction as a stand-alone process is classified at TRL 8-9, with some mature applications reaching TRL=9. To remain conservative, we have opted for TRL 8; 4) Literature indicates that entrained flow gasification has reached TRL=8. However wide commercial deployment in China is indicative of a TRL =9; Source: RWE input; PBL – 'Decarbonization options for the Dutch waste incineration industry' (2022); Waste Management Symposium – 'Technical Paper on Waste Processing Technologies' (2008); Waste Recycling Magazine – 'Waste Pelletization Feature' (2023); TTU-IR – 'Study Comparing Trash-to-Gas (TtG) Systems' (2021); IEA –'Assessment of successes and lessons learned for biofuels deployment' (2023); Rudolfsson et al. – 'Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass' (2017); Schotgroep BV – 'Ketenanalyse torrefactie conversietechnologie' (2021); Samani et al. – 'Numerical simulation of lignin gasification: The role of gasifying agents in entrained-flow reactors' (2024)

Appendix

- 1. Introduction FUREC
- 2. EU chemical industry: demand for raw materials (deep-dive NL)
- 3. EU waste market: supply of non-recyclable waste
- 4. Role of alternative waste processing technologies to convert non-recyclable waste
- 5. Details scope of study and availability and quality of information

Strategy&

Details scope of study and availability and quality of information

Scope

Limited Extensive

We have carried out the work as agreed with you in the Engagement Letter (17 September 2024). In accordance with the Engagement Letter, our scope included the chemical raw material demand from the EU chemical industry, the supply of (non-recyclable waste) in the EU, the role of alternative waste processing technologies and recommendations to stimulate these alternative waste processing technologies. The scope of the work as agreed in the order confirmation remains unchanged.

We have not conducted a review of the technology, the business case and the sourcing strategy of FUREC.

We have completed our analysis work on 11th November 2024. Therefore, this report does not include the consequences of events after that date or the impact of information that became available later.

Availability and quality of information

Our information is based on expert information, public sources and RWE management information regarding FUREC (see sources in footnotes).

The provided information has allowed us to gain insight and understanding into the raw material demand from the EU chemical industry, the (non-recyclable waste) supply in the EU, the role of alternative waste processing technologies, and recommendations to stimulate these technologies.

Starting point for our work

We have based our work on the information made available to us. We have assumed that this information is accurate, complete, and not misleading. We have not performed an audit of this information, nor have we conducted a review to determine its completeness and accuracy in accordance with international audit or review standards.

Access to our report

Our report is specifically prepared for the client with whom we have agreed on the purpose and scope of our work, or to whom we have explained the nature and extent of our work and the limitations therein. We do not accept any responsibility, duty of care, or liability - contractually, in tort (including negligence), or otherwise - for the use of the report by parties other than the client.

As agreed in our Engagement Letter, our report may only be shared with third parties for informational purposes.

Other comments

This report, as well as any dispute arising from or relating to (the content of) the Report, shall be exclusively governed by Dutch law.

Strategy&

Thank you

strategyand.pwc.com

© 2024 PwC. All rights reserved.

PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see pwc.com/structure for further details. **Disclaimer:** This content is general information purposes only, and should not be used as a substitute for consultation with professional advisors.